
😷 The Fill-Mask Association Test (掩码填空联系测验).
TheFill-Mask Association Test (FMAT) is an integrative andprobability-based method usingBERT Models tomeasure conceptual associations (e.g., attitudes, biases, stereotypes,social norms, cultural values) aspropositions in naturallanguage (Bao, 2024,JPSP).
⚠️Please update this package to version ≥ 2025.4 for faster andmore robust functionality.


Bruce H. W. S. Bao 包寒吴霜
Besides the R packageFMAT, you also need to have aPython environment and install three Python packages(transformers,huggingface-hub, andtorch).
## Method 1: Install from CRANinstall.packages("FMAT")## Method 2: Install from GitHubinstall.packages("devtools")devtools::install_github("psychbruce/FMAT",force=TRUE)InstallAnaconda (anenvironment/package manager that automatically installs Python, its IDEslike Spyder, and a large list of common Python packages).
Set RStudio to “Run as Administrator” to enablepipcommand in Terminal.
RStudio (find “rstudio.exe” in its installation path)
→ File Properties → Compatibility → Settings
→ Tick“Run this program as an administrator”
Open RStudio and specify the Anaconda’s Python interpreter.
RStudio → Tools → Global/Project Options
→ Python → Select →Conda Environments
→ Choose“…/Anaconda3/python.exe”
Check Python packages installed and versions:
(withTerminal in RStudio orCommandPrompt on Windows system)
pip listInstall Python packages “transformers”,“huggingface-hub”,and “torch”.
You may install either the latest versions (with better support formodern models) or specific versions (with downloading progressbars).
For CPU users:
pip install transformers huggingface-hub torchFor GPU (CUDA) users:
pip install transformers huggingface-hubpip install torch --index-url https://download.pytorch.org/whl/cu130For CPU users:
pip install transformers==4.40.2 huggingface-hub==0.20.3 torch==2.2.1For GPU (CUDA) users:
pip install transformers==4.40.2 huggingface-hub==0.20.3pip install torch==2.2.1 --index-url https://download.pytorch.org/whl/cu121HTTPSConnectionPool(host='huggingface.co', port=443),please try to (1) reinstallAnaconda so thatsome unknown issues may be fixed, or (2) downgrade the “urllib3” package to version≤ 1.25.11 (pip install urllib3==1.25.11) so that it willuse HTTP proxies (rather than HTTPS proxies as in later versions) toconnect to Hugging Face.Useset_cache_folder() to change the default HuggingFacecache directory from “%USERPROFILE%/.cache/huggingface/hub” to anotherfolder you like, so that all models would be downloaded and saved inthat folder. Keep in mind: This function takes effect only for thecurrent R sessiontemporarily, so you should run this each timeBEFORE you use other FMAT functions in an R session.
UseBERT_download() to downloadBERT models. A full list of BERT models areavailable atHuggingFace.
UseBERT_info() andBERT_vocab() to obtaindetailed information of BERT models.
Design queries that conceptually represent the constructs you wouldmeasure (seeBao, 2024,JPSP for how to design queries).
UseFMAT_query() and/orFMAT_query_bind()to prepare adata.table of queries.
UseFMAT_run() to get raw data (probability estimates)for further analysis.
Several steps of preprocessing have been included in the function foreasier use (seeFMAT_run() for details).
<mask> rather than[MASK] as the mask token, the input query will beautomatically modified so that users can always use[MASK] in query design.\u0120 and\u2581 will beautomatically added to match the whole words (rather thansubwords) for[MASK].By default, theFMAT package uses CPU to enable thefunctionality for all users. But for advanced users who want toaccelerate the pipeline with GPU, theFMAT_run() functionsupports using a GPU device.
Test results (on the developer’s computer, depending on BERT modelsize):
Checklist:
torch package) with CUDAsupport.torch without CUDAsupport, please first uninstall it (command:pip uninstall torch).torch version supporting CUDA 12.1, the sameversion ofCUDAToolkit 12.1 may also be installed).The reliability and validity of the following 12 English BERT modelsfor the FMAT have been established in our earlier research.
(model name on Hugging Face - model file size)
For details aboutBERT, see:
library(FMAT)models=c("bert-base-uncased","bert-base-cased","bert-large-uncased","bert-large-cased","distilbert-base-uncased","distilbert-base-cased","albert-base-v1","albert-base-v2","roberta-base","distilroberta-base","vinai/bertweet-base","vinai/bertweet-large")BERT_download(models)ℹ Device Info:R Packages:FMAT 2024.5reticulate 1.36.1Python Packages:transformers 4.40.2torch 2.2.1+cu121NVIDIA GPU CUDA Support:CUDA Enabled: TRUECUDA Version: 12.1GPU (Device): NVIDIA GeForce RTX 2050── Downloading model "bert-base-uncased" ──────────────────────────────────────────→ (1) Downloading configuration...config.json: 100%|██████████| 570/570 [00:00<00:00, 114kB/s]→ (2) Downloading tokenizer...tokenizer_config.json: 100%|██████████| 48.0/48.0 [00:00<00:00, 23.9kB/s]vocab.txt: 100%|██████████| 232k/232k [00:00<00:00, 1.50MB/s]tokenizer.json: 100%|██████████| 466k/466k [00:00<00:00, 1.98MB/s]→ (3) Downloading model...model.safetensors: 100%|██████████| 440M/440M [00:36<00:00, 12.1MB/s] ✔ Successfully downloaded model "bert-base-uncased"── Downloading model "bert-base-cased" ────────────────────────────────────────────→ (1) Downloading configuration...config.json: 100%|██████████| 570/570 [00:00<00:00, 63.3kB/s]→ (2) Downloading tokenizer...tokenizer_config.json: 100%|██████████| 49.0/49.0 [00:00<00:00, 8.66kB/s]vocab.txt: 100%|██████████| 213k/213k [00:00<00:00, 1.39MB/s]tokenizer.json: 100%|██████████| 436k/436k [00:00<00:00, 10.1MB/s]→ (3) Downloading model...model.safetensors: 100%|██████████| 436M/436M [00:37<00:00, 11.6MB/s] ✔ Successfully downloaded model "bert-base-cased"── Downloading model "bert-large-uncased" ─────────────────────────────────────────→ (1) Downloading configuration...config.json: 100%|██████████| 571/571 [00:00<00:00, 268kB/s]→ (2) Downloading tokenizer...tokenizer_config.json: 100%|██████████| 48.0/48.0 [00:00<00:00, 12.0kB/s]vocab.txt: 100%|██████████| 232k/232k [00:00<00:00, 1.50MB/s]tokenizer.json: 100%|██████████| 466k/466k [00:00<00:00, 1.99MB/s]→ (3) Downloading model...model.safetensors: 100%|██████████| 1.34G/1.34G [01:36<00:00, 14.0MB/s]✔ Successfully downloaded model "bert-large-uncased"── Downloading model "bert-large-cased" ───────────────────────────────────────────→ (1) Downloading configuration...config.json: 100%|██████████| 762/762 [00:00<00:00, 125kB/s]→ (2) Downloading tokenizer...tokenizer_config.json: 100%|██████████| 49.0/49.0 [00:00<00:00, 12.3kB/s]vocab.txt: 100%|██████████| 213k/213k [00:00<00:00, 1.41MB/s]tokenizer.json: 100%|██████████| 436k/436k [00:00<00:00, 5.39MB/s]→ (3) Downloading model...model.safetensors: 100%|██████████| 1.34G/1.34G [01:35<00:00, 14.0MB/s]✔ Successfully downloaded model "bert-large-cased"── Downloading model "distilbert-base-uncased" ────────────────────────────────────→ (1) Downloading configuration...config.json: 100%|██████████| 483/483 [00:00<00:00, 161kB/s]→ (2) Downloading tokenizer...tokenizer_config.json: 100%|██████████| 48.0/48.0 [00:00<00:00, 9.46kB/s]vocab.txt: 100%|██████████| 232k/232k [00:00<00:00, 16.5MB/s]tokenizer.json: 100%|██████████| 466k/466k [00:00<00:00, 14.8MB/s]→ (3) Downloading model...model.safetensors: 100%|██████████| 268M/268M [00:19<00:00, 13.5MB/s] ✔ Successfully downloaded model "distilbert-base-uncased"── Downloading model "distilbert-base-cased" ──────────────────────────────────────→ (1) Downloading configuration...config.json: 100%|██████████| 465/465 [00:00<00:00, 233kB/s]→ (2) Downloading tokenizer...tokenizer_config.json: 100%|██████████| 49.0/49.0 [00:00<00:00, 9.80kB/s]vocab.txt: 100%|██████████| 213k/213k [00:00<00:00, 1.39MB/s]tokenizer.json: 100%|██████████| 436k/436k [00:00<00:00, 8.70MB/s]→ (3) Downloading model...model.safetensors: 100%|██████████| 263M/263M [00:24<00:00, 10.9MB/s] ✔ Successfully downloaded model "distilbert-base-cased"── Downloading model "albert-base-v1" ─────────────────────────────────────────────→ (1) Downloading configuration...config.json: 100%|██████████| 684/684 [00:00<00:00, 137kB/s]→ (2) Downloading tokenizer...tokenizer_config.json: 100%|██████████| 25.0/25.0 [00:00<00:00, 3.57kB/s]spiece.model: 100%|██████████| 760k/760k [00:00<00:00, 4.93MB/s]tokenizer.json: 100%|██████████| 1.31M/1.31M [00:00<00:00, 13.4MB/s]→ (3) Downloading model...model.safetensors: 100%|██████████| 47.4M/47.4M [00:03<00:00, 13.4MB/s]✔ Successfully downloaded model "albert-base-v1"── Downloading model "albert-base-v2" ─────────────────────────────────────────────→ (1) Downloading configuration...config.json: 100%|██████████| 684/684 [00:00<00:00, 137kB/s]→ (2) Downloading tokenizer...tokenizer_config.json: 100%|██████████| 25.0/25.0 [00:00<00:00, 4.17kB/s]spiece.model: 100%|██████████| 760k/760k [00:00<00:00, 5.10MB/s]tokenizer.json: 100%|██████████| 1.31M/1.31M [00:00<00:00, 6.93MB/s]→ (3) Downloading model...model.safetensors: 100%|██████████| 47.4M/47.4M [00:03<00:00, 13.8MB/s]✔ Successfully downloaded model "albert-base-v2"── Downloading model "roberta-base" ───────────────────────────────────────────────→ (1) Downloading configuration...config.json: 100%|██████████| 481/481 [00:00<00:00, 80.3kB/s]→ (2) Downloading tokenizer...tokenizer_config.json: 100%|██████████| 25.0/25.0 [00:00<00:00, 6.25kB/s]vocab.json: 100%|██████████| 899k/899k [00:00<00:00, 2.72MB/s]merges.txt: 100%|██████████| 456k/456k [00:00<00:00, 8.22MB/s]tokenizer.json: 100%|██████████| 1.36M/1.36M [00:00<00:00, 8.56MB/s]→ (3) Downloading model...model.safetensors: 100%|██████████| 499M/499M [00:38<00:00, 12.9MB/s] ✔ Successfully downloaded model "roberta-base"── Downloading model "distilroberta-base" ─────────────────────────────────────────→ (1) Downloading configuration...config.json: 100%|██████████| 480/480 [00:00<00:00, 96.4kB/s]→ (2) Downloading tokenizer...tokenizer_config.json: 100%|██████████| 25.0/25.0 [00:00<00:00, 12.0kB/s]vocab.json: 100%|██████████| 899k/899k [00:00<00:00, 6.59MB/s]merges.txt: 100%|██████████| 456k/456k [00:00<00:00, 9.46MB/s]tokenizer.json: 100%|██████████| 1.36M/1.36M [00:00<00:00, 11.5MB/s]→ (3) Downloading model...model.safetensors: 100%|██████████| 331M/331M [00:25<00:00, 13.0MB/s] ✔ Successfully downloaded model "distilroberta-base"── Downloading model "vinai/bertweet-base" ────────────────────────────────────────→ (1) Downloading configuration...config.json: 100%|██████████| 558/558 [00:00<00:00, 187kB/s]→ (2) Downloading tokenizer...vocab.txt: 100%|██████████| 843k/843k [00:00<00:00, 7.44MB/s]bpe.codes: 100%|██████████| 1.08M/1.08M [00:00<00:00, 7.01MB/s]tokenizer.json: 100%|██████████| 2.91M/2.91M [00:00<00:00, 9.10MB/s]→ (3) Downloading model...pytorch_model.bin: 100%|██████████| 543M/543M [00:48<00:00, 11.1MB/s] ✔ Successfully downloaded model "vinai/bertweet-base"── Downloading model "vinai/bertweet-large" ───────────────────────────────────────→ (1) Downloading configuration...config.json: 100%|██████████| 614/614 [00:00<00:00, 120kB/s]→ (2) Downloading tokenizer...vocab.json: 100%|██████████| 899k/899k [00:00<00:00, 5.90MB/s]merges.txt: 100%|██████████| 456k/456k [00:00<00:00, 7.30MB/s]tokenizer.json: 100%|██████████| 1.36M/1.36M [00:00<00:00, 8.31MB/s]→ (3) Downloading model...pytorch_model.bin: 100%|██████████| 1.42G/1.42G [02:29<00:00, 9.53MB/s]✔ Successfully downloaded model "vinai/bertweet-large"── Downloaded models: ── sizealbert-base-v1 45 MBalbert-base-v2 45 MBbert-base-cased 416 MBbert-base-uncased 420 MBbert-large-cased 1277 MBbert-large-uncased 1283 MBdistilbert-base-cased 251 MBdistilbert-base-uncased 256 MBdistilroberta-base 316 MBroberta-base 476 MBvinai/bertweet-base 517 MBvinai/bertweet-large 1356 MB✔ Downloaded models saved at C:/Users/Bruce/.cache/huggingface/hub (6.52 GB)BERT_info(models) model size vocab dims mask <fctr> <char> <int> <int> <char> 1: bert-base-uncased 420MB 30522 768 [MASK] 2: bert-base-cased 416MB 28996 768 [MASK] 3: bert-large-uncased 1283MB 30522 1024 [MASK] 4: bert-large-cased 1277MB 28996 1024 [MASK] 5: distilbert-base-uncased 256MB 30522 768 [MASK] 6: distilbert-base-cased 251MB 28996 768 [MASK] 7: albert-base-v1 45MB 30000 128 [MASK] 8: albert-base-v2 45MB 30000 128 [MASK] 9: roberta-base 476MB 50265 768 <mask>10: distilroberta-base 316MB 50265 768 <mask>11: vinai/bertweet-base 517MB 64001 768 <mask>12: vinai/bertweet-large 1356MB 50265 1024 <mask>(Tested 2024-05-16 on the developer’s computer: HP Probook 450 G10Notebook PC)
We are using a more comprehensive list of 30 English BERT models and30 Chinese BERT models in our ongoing and future projects.
library(FMAT)set_cache_folder("G:/HuggingFace_Cache/")# models saved in my portable SSD## 30 English Modelsmodels.en=c(# BERT (base/large/large-wwm, uncased/cased)"bert-base-uncased","bert-base-cased","bert-large-uncased","bert-large-cased","bert-large-uncased-whole-word-masking","bert-large-cased-whole-word-masking",# ALBERT (base/large/xlarge, v1/v2)"albert-base-v1","albert-base-v2","albert-large-v1","albert-large-v2","albert-xlarge-v1","albert-xlarge-v2",# DistilBERT (uncased/cased/distilroberta)"distilbert-base-uncased","distilbert-base-cased","distilroberta-base",# RoBERTa (roberta/muppet, base/large)"roberta-base","roberta-large","facebook/muppet-roberta-base","facebook/muppet-roberta-large",# ELECTRA (base/large)"google/electra-base-generator","google/electra-large-generator",# MobileBERT (uncased)"google/mobilebert-uncased",# ModernBERT (base/large)"answerdotai/ModernBERT-base",# transformers >= 4.48.0"answerdotai/ModernBERT-large",# transformers >= 4.48.0# [Tweets] (BERT/RoBERTa/BERTweet-base/BERTweet-large)"muhtasham/base-mlm-tweet","cardiffnlp/twitter-roberta-base","vinai/bertweet-base","vinai/bertweet-large",# [PubMed Abstracts] (BiomedBERT, base/large)"microsoft/BiomedNLP-BiomedBERT-base-uncased-abstract","microsoft/BiomedNLP-BiomedBERT-large-uncased-abstract")## 30 Chinese Modelsmodels.cn=c(# BERT [Google]"bert-base-chinese",# BERT [Alibaba-PAI] (base/ck-base/ck-large/ck-huge)"alibaba-pai/pai-bert-base-zh","alibaba-pai/pai-ckbert-base-zh","alibaba-pai/pai-ckbert-large-zh","alibaba-pai/pai-ckbert-huge-zh",# BERT [HFL] (wwm, bert-wiki/bert-ext/roberta-ext)"hfl/chinese-bert-wwm","hfl/chinese-bert-wwm-ext","hfl/chinese-roberta-wwm-ext",# BERT [HFL] (lert/macbert/electra, base/large)"hfl/chinese-lert-base","hfl/chinese-lert-large","hfl/chinese-macbert-base","hfl/chinese-macbert-large","hfl/chinese-electra-180g-base-generator","hfl/chinese-electra-180g-large-generator",# RoBERTa [UER] (H=512/768, L=6/8/10/12)"uer/chinese_roberta_L-6_H-512","uer/chinese_roberta_L-8_H-512","uer/chinese_roberta_L-10_H-512","uer/chinese_roberta_L-12_H-512","uer/chinese_roberta_L-6_H-768","uer/chinese_roberta_L-8_H-768","uer/chinese_roberta_L-10_H-768","uer/chinese_roberta_L-12_H-768",# RoBERTa [UER] (wwm, base/large)"uer/roberta-base-wwm-chinese-cluecorpussmall","uer/roberta-large-wwm-chinese-cluecorpussmall",# BERT [IDEA-CCNL] (MacBERT/TCBert-base/TCBert-large)"IDEA-CCNL/Erlangshen-MacBERT-325M-NLI-Chinese","IDEA-CCNL/Erlangshen-TCBert-330M-Classification-Chinese","IDEA-CCNL/Erlangshen-TCBert-330M-Sentence-Embedding-Chinese",# RoBERTa [IDEA-CCNL] (UniMC, base/large)"IDEA-CCNL/Erlangshen-UniMC-RoBERTa-110M-Chinese","IDEA-CCNL/Erlangshen-UniMC-RoBERTa-330M-Chinese",# MegatronBERT [IDEA-CCNL] (huge)"IDEA-CCNL/Erlangshen-UniMC-MegatronBERT-1.3B-Chinese")BERT_info(models.en)BERT_info(models.cn) model type param vocab embed layer heads mask <fctr> <fctr> <int> <int> <int> <int> <int> <fctr> 1: bert-base-uncased bert 109482240 30522 768 12 12 [MASK] 2: bert-base-cased bert 108310272 28996 768 12 12 [MASK] 3: bert-large-uncased bert 335141888 30522 1024 24 16 [MASK] 4: bert-large-cased bert 333579264 28996 1024 24 16 [MASK] 5: bert-large-uncased-whole-word-masking bert 335141888 30522 1024 24 16 [MASK] 6: bert-large-cased-whole-word-masking bert 333579264 28996 1024 24 16 [MASK] 7: albert-base-v1 albert 11683584 30000 128 12 12 [MASK] 8: albert-base-v2 albert 11683584 30000 128 12 12 [MASK] 9: albert-large-v1 albert 17683968 30000 128 24 16 [MASK]10: albert-large-v2 albert 17683968 30000 128 24 16 [MASK]11: albert-xlarge-v1 albert 58724864 30000 128 24 16 [MASK]12: albert-xlarge-v2 albert 58724864 30000 128 24 16 [MASK]13: distilbert-base-uncased distilbert 66362880 30522 768 6 12 [MASK]14: distilbert-base-cased distilbert 65190912 28996 768 6 12 [MASK]15: distilroberta-base roberta 82118400 50265 768 6 12 <mask>16: roberta-base roberta 124645632 50265 768 12 12 <mask>17: roberta-large roberta 355359744 50265 1024 24 16 <mask>18: facebook/muppet-roberta-base roberta 124645632 50265 768 12 12 <mask>19: facebook/muppet-roberta-large roberta 355359744 50265 1024 24 16 <mask>20: google/electra-base-generator electra 33511168 30522 768 12 4 [MASK]21: google/electra-large-generator electra 50999552 30522 1024 24 4 [MASK]22: google/mobilebert-uncased mobilebert 24581888 30522 128 24 4 [MASK]23: answerdotai/ModernBERT-base modernbert 149014272 50368 768 22 12 [MASK]24: answerdotai/ModernBERT-large modernbert 394781696 50368 1024 28 16 [MASK]25: muhtasham/base-mlm-tweet bert 109482240 30522 768 12 12 [MASK]26: cardiffnlp/twitter-roberta-base roberta 124645632 50265 768 12 12 <mask>27: vinai/bertweet-base roberta 134899968 64001 768 12 12 <mask>28: vinai/bertweet-large roberta 355359744 50265 1024 24 16 <mask>29: microsoft/BiomedNLP-BiomedBERT-base-uncased-abstract bert 109482240 30522 768 12 12 [MASK]30: microsoft/BiomedNLP-BiomedBERT-large-uncased-abstract bert 335141888 30522 1024 24 16 [MASK] model type param vocab embed layer heads maskMissing values of year tokens (1800~2019):
"albert" series: 3 missing"ModernBERT" series: 65 missing"roberta" series,"muppet" series,"distilroberta-base","cardiffnlp/twitter-roberta-base","vinai/bertweet-large": 79 missing"vinai/bertweet-base": 29 missing"BiomedBERT" series: 163 missing model type param vocab embed layer heads mask <fctr> <fctr> <int> <int> <int> <int> <int> <fctr> 1: bert-base-chinese bert 102267648 21128 768 12 12 [MASK] 2: alibaba-pai/pai-bert-base-zh bert 102267648 21128 768 12 12 [MASK] 3: alibaba-pai/pai-ckbert-base-zh bert 102269184 21130 768 12 12 [MASK] 4: alibaba-pai/pai-ckbert-large-zh bert 325524480 21130 1024 24 16 [MASK] 5: alibaba-pai/pai-ckbert-huge-zh megatron-bert 1257367552 21248 2048 24 8 [MASK] 6: hfl/chinese-bert-wwm bert 102267648 21128 768 12 12 [MASK] 7: hfl/chinese-bert-wwm-ext bert 102267648 21128 768 12 12 [MASK] 8: hfl/chinese-roberta-wwm-ext bert 102267648 21128 768 12 12 [MASK] 9: hfl/chinese-lert-base bert 102267648 21128 768 12 12 [MASK]10: hfl/chinese-lert-large bert 325522432 21128 1024 24 16 [MASK]11: hfl/chinese-macbert-base bert 102267648 21128 768 12 12 [MASK]12: hfl/chinese-macbert-large bert 325522432 21128 1024 24 16 [MASK]13: hfl/chinese-electra-180g-base-generator electra 22108608 21128 768 12 3 [MASK]14: hfl/chinese-electra-180g-large-generator electra 41380096 21128 1024 24 4 [MASK]15: uer/chinese_roberta_L-6_H-512 bert 30258688 21128 512 6 8 [MASK]16: uer/chinese_roberta_L-8_H-512 bert 36563456 21128 512 8 8 [MASK]17: uer/chinese_roberta_L-10_H-512 bert 42868224 21128 512 10 8 [MASK]18: uer/chinese_roberta_L-12_H-512 bert 49172992 21128 512 12 8 [MASK]19: uer/chinese_roberta_L-6_H-768 bert 59740416 21128 768 6 12 [MASK]20: uer/chinese_roberta_L-8_H-768 bert 73916160 21128 768 8 12 [MASK]21: uer/chinese_roberta_L-10_H-768 bert 88091904 21128 768 10 12 [MASK]22: uer/chinese_roberta_L-12_H-768 bert 102267648 21128 768 12 12 [MASK]23: uer/roberta-base-wwm-chinese-cluecorpussmall bert 102267648 21128 768 12 12 [MASK]24: uer/roberta-large-wwm-chinese-cluecorpussmall bert 325522432 21128 1024 24 16 [MASK]25: IDEA-CCNL/Erlangshen-MacBERT-325M-NLI-Chinese bert 325625856 21229 1024 24 16 [MASK]26: IDEA-CCNL/Erlangshen-TCBert-330M-Classification-Chinese bert 325522432 21128 1024 24 16 [MASK]27: IDEA-CCNL/Erlangshen-TCBert-330M-Sentence-Embedding-Chinese bert 325522432 21128 1024 24 16 [MASK]28: IDEA-CCNL/Erlangshen-UniMC-RoBERTa-110M-Chinese bert 102267648 21128 768 12 12 [MASK]29: IDEA-CCNL/Erlangshen-UniMC-RoBERTa-330M-Chinese bert 325522432 21128 1024 24 16 [MASK]30: IDEA-CCNL/Erlangshen-UniMC-MegatronBERT-1.3B-Chinese megatron-bert 1257367552 21248 2048 24 8 [MASK] model type param vocab embed layer heads maskMissing values of year tokens (1800~2019):
ℹ Device Info:R Packages:FMAT 2025.12reticulate 1.44.1Python Packages:transformers 4.57.3torch 2.9.1+cu130huggingface-hub 0.36.0NVIDIA GPU CUDA Support:CUDA Enabled: TRUEGPU (Device): NVIDIA GeForce RTX 5060 Laptop GPU(Tested 2025-12-14 on the developer’s computer: HP Zbook X ZHAN99 G1i16 inch - Intel Ultra9 285H - 64GB/2T - NVIDIA GeForce RTX 5060 LaptopGPU - Mobile Workstation PC)
While the FMAT is an innovative method for thecomputationalintelligent analysis of psychology and society, you may also seekfor an integrative toolbox for other text-analytic methods. Another Rpackage I developed—PsychWordVec—isuseful and user-friendly for word embedding analysis (e.g., the WordEmbedding Association Test, WEAT). Please refer to its documentation andfeel free to use it.