Movatterモバイル変換


[0]ホーム

URL:


iimi: Identifying Infection with Machine Intelligence

A novel machine learning method for plant viruses diagnostic using genome sequencing data. This package includes three different machine learning models, random forest, XGBoost, and elastic net, to train and predict mapped genome samples. Mappability profile and unreliable regions are introduced to the algorithm, and users can build a mappability profile from scratch with functions included in the package. Plotting mapped sample coverage information is provided.

Version:1.2.2
Depends:R (≥ 3.5.0)
Imports:Biostrings,caret,data.table,dplyr,GenomicAlignments,IRanges,mltools,randomForest,Rsamtools, stats,xgboost,MTPS,stringr,R.utils,Rdpack
Suggests:rmarkdown,testthat (≥ 3.0.0),knitr,httr
Published:2025-12-04
DOI:10.32614/CRAN.package.iimi
Author:Haochen Ning [aut], Ian Boyes [aut], Ibrahim NumanagićORCID iD [aut], Michael Rott [aut], Li XingORCID iD [aut], Xuekui ZhangORCID iD [aut, cre]
Maintainer:Xuekui Zhang <xuekui at uvic.ca>
License:MIT + fileLICENSE
NeedsCompilation:no
CRAN checks:iimi results

Documentation:

Reference manual:iimi.html ,iimi.pdf
Vignettes:Introduction to the iimi package (source,R code)

Downloads:

Package source: iimi_1.2.2.tar.gz
Windows binaries: r-devel:iimi_1.2.2.zip, r-release:iimi_1.2.2.zip, r-oldrel:iimi_1.2.2.zip
macOS binaries: r-release (arm64):iimi_1.2.2.tgz, r-oldrel (arm64):iimi_1.2.2.tgz, r-release (x86_64):iimi_1.2.2.tgz, r-oldrel (x86_64):iimi_1.2.2.tgz
Old sources: iimi archive

Linking:

Please use the canonical formhttps://CRAN.R-project.org/package=iimito link to this page.


[8]ページ先頭

©2009-2025 Movatter.jp