Movatterモバイル変換


[0]ホーム

URL:


LilRhino: For Implementation of Feed Reduction, Learning Examples, NLP andCode Management

This is for code management functions, NLP tools, a Monty Hall simulator, and for implementing my own variable reduction technique called Feed Reduction. The Feed Reduction technique is not yet published, but is merely a tool for implementing a series of binary neural networks meant for reducing data into N dimensions, where N is the number of possible values of the response variable.

Version:1.2.2
Imports:FNN,stringi,beepr,ggplot2,keras,dplyr,readr, parallel,tm,e1071,SnowballC,data.table,fastmatch,neuralnet
Suggests:textclean
Published:2022-04-27
DOI:10.32614/CRAN.package.LilRhino
Author:Travis Barton (2018)
Maintainer:Travis Barton <travisdatabarton at gmail.com>
License:GPL-2
NeedsCompilation:no
Materials:README
CRAN checks:LilRhino results

Documentation:

Reference manual:LilRhino.html ,LilRhino.pdf

Downloads:

Package source: LilRhino_1.2.2.tar.gz
Windows binaries: r-devel:LilRhino_1.2.2.zip, r-release:LilRhino_1.2.2.zip, r-oldrel:LilRhino_1.2.2.zip
macOS binaries: r-release (arm64):LilRhino_1.2.2.tgz, r-oldrel (arm64):LilRhino_1.2.2.tgz, r-release (x86_64):LilRhino_1.2.2.tgz, r-oldrel (x86_64):LilRhino_1.2.2.tgz
Old sources: LilRhino archive

Linking:

Please use the canonical formhttps://CRAN.R-project.org/package=LilRhinoto link to this page.


[8]ページ先頭

©2009-2025 Movatter.jp