Movatterモバイル変換


[0]ホーム

URL:


BioMoR: Bioinformatics Modeling with Recursion and Autoencoder-BasedEnsemble

Tools for bioinformatics modeling using recursive transformer-inspired architectures, autoencoders, random forests, XGBoost, and stacked ensemble models. Includes utilities for cross-validation, calibration, benchmarking, and threshold optimization in predictive modeling workflows. The methodology builds on ensemble learning (Breiman 2001 <doi:10.1023/A:1010933404324>), gradient boosting (Chen and Guestrin 2016 <doi:10.1145/2939672.2939785>), autoencoders (Hinton and Salakhutdinov 2006 <doi:10.1126/science.1127647>), and recursive transformer efficiency approaches such as Mixture-of-Recursions (Bae et al. 2025 <doi:10.48550/arXiv.2507.10524>).

Version:0.1.1
Depends:R (≥ 4.2.0)
Imports:caret,recipes,themis,xgboost,magrittr,dplyr,pROC
Suggests:randomForest,testthat (≥ 3.0.0),PRROC,ggplot2,purrr,tibble,yardstick,knitr,rmarkdown
Published:2025-12-10
DOI:10.32614/CRAN.package.BioMoR
Author:MD. Arshad [aut, cre]
Maintainer:MD. Arshad <arshad10867c at gmail.com>
License:MIT + fileLICENSE
NeedsCompilation:no
Materials:NEWS
CRAN checks:BioMoR results

Documentation:

Reference manual:BioMoR.html ,BioMoR.pdf
Vignettes:BioMoR Autoencoder and Embeddings (source,R code)
BioMoR Benchmarking Tutorial (source,R code)
Getting Started with BioMoR (source,R code)

Downloads:

Package source: BioMoR_0.1.1.tar.gz
Windows binaries: r-devel:BioMoR_0.1.1.zip, r-release:BioMoR_0.1.1.zip, r-oldrel:BioMoR_0.1.1.zip
macOS binaries: r-release (arm64):BioMoR_0.1.1.tgz, r-oldrel (arm64):BioMoR_0.1.1.tgz, r-release (x86_64):BioMoR_0.1.1.tgz, r-oldrel (x86_64):BioMoR_0.1.1.tgz
Old sources: BioMoR archive

Linking:

Please use the canonical formhttps://CRAN.R-project.org/package=BioMoRto link to this page.


[8]ページ先頭

©2009-2025 Movatter.jp