Movatterモバイル変換


[0]ホーム

URL:


flassomsm: Penalized Estimation for Multi-State Models with Lasso and FusedPenalties

Provides a suite of methods for detecting influential subjects in longitudinal datasets, particularly when observations occur at irregular time points. The methods identify individuals whose response trajectories deviate significantly from the population pattern, enabling detection of anomalies or subjects exerting undue influence on model outcomes.

Version:0.1.0
Depends:R (≥ 4.1.0)
Imports:dplyr,corpcor,future,future.apply,glmnet,mstate,numDeriv,penalized,progress,progressr,survival
Suggests:ggplot2,rlang,mice
Published:2025-11-26
DOI:10.32614/CRAN.package.flassomsm
Author:Atanu Bhattacharjee [aut, cre, ctb], Gajendra Kumar Vishwakarma [aut, ctb], Abhipsa Tripathy [aut, ctb]
Maintainer:Atanu Bhattacharjee <atanustat at gmail.com>
License:GPL-3
NeedsCompilation:no
CRAN checks:flassomsm results

Documentation:

Reference manual:flassomsm.html ,flassomsm.pdf

Downloads:

Package source: flassomsm_0.1.0.tar.gz
Windows binaries: r-devel:flassomsm_0.1.0.zip, r-release:flassomsm_0.1.0.zip, r-oldrel:flassomsm_0.1.0.zip
macOS binaries: r-release (arm64):flassomsm_0.1.0.tgz, r-oldrel (arm64):flassomsm_0.1.0.tgz, r-release (x86_64):flassomsm_0.1.0.tgz, r-oldrel (x86_64):flassomsm_0.1.0.tgz

Linking:

Please use the canonical formhttps://CRAN.R-project.org/package=flassomsmto link to this page.


[8]ページ先頭

©2009-2025 Movatter.jp