Movatterモバイル変換


[0]ホーム

URL:


yardstick

Coverage StatusCRAN_Status_BadgeDownloadsR-CMD-check

Overview

yardstick is a package to estimate how well models areworking usingtidydata principles. See thepackage webpage for moreinformation.

Installation

To install the package:

install.packages("yardstick")# Development version:# install.packages("pak")pak::pak("tidymodels/yardstick")

Two class metric

For example, suppose you create a classification model and predict ona new data set. You might have data that looks like this:

library(yardstick)library(dplyr)head(two_class_example)#>    truth  Class1   Class2 predicted#> 1 Class2 0.00359 0.996411    Class2#> 2 Class1 0.67862 0.321379    Class1#> 3 Class2 0.11089 0.889106    Class2#> 4 Class1 0.73516 0.264838    Class1#> 5 Class2 0.01624 0.983760    Class2#> 6 Class1 0.99928 0.000725    Class1

You can use adplyr-like syntax to compute commonperformance characteristics of the model and get them back in a dataframe:

metrics(two_class_example, truth, predicted)#> # A tibble: 2 × 3#>   .metric  .estimator .estimate#>   <chr>    <chr>          <dbl>#> 1 accuracy binary         0.838#> 2 kap      binary         0.675# ortwo_class_example%>%roc_auc(truth, Class1)#> # A tibble: 1 × 3#>   .metric .estimator .estimate#>   <chr>   <chr>          <dbl>#> 1 roc_auc binary         0.939

Multiclass metrics

All classification metrics have at least one multiclass extension,with many of them having multiple ways to calculate multiclassmetrics.

data("hpc_cv")hpc_cv<-as_tibble(hpc_cv)hpc_cv#> # A tibble: 3,467 × 7#>    obs   pred     VF      F       M          L Resample#>    <fct> <fct> <dbl>  <dbl>   <dbl>      <dbl> <chr>#>  1 VF    VF    0.914 0.0779 0.00848 0.0000199  Fold01#>  2 VF    VF    0.938 0.0571 0.00482 0.0000101  Fold01#>  3 VF    VF    0.947 0.0495 0.00316 0.00000500 Fold01#>  4 VF    VF    0.929 0.0653 0.00579 0.0000156  Fold01#>  5 VF    VF    0.942 0.0543 0.00381 0.00000729 Fold01#>  6 VF    VF    0.951 0.0462 0.00272 0.00000384 Fold01#>  7 VF    VF    0.914 0.0782 0.00767 0.0000354  Fold01#>  8 VF    VF    0.918 0.0744 0.00726 0.0000157  Fold01#>  9 VF    VF    0.843 0.128  0.0296  0.000192   Fold01#> 10 VF    VF    0.920 0.0728 0.00703 0.0000147  Fold01#> # ℹ 3,457 more rows
# Macro averaged multiclass precisionprecision(hpc_cv, obs, pred)#> # A tibble: 1 × 3#>   .metric   .estimator .estimate#>   <chr>     <chr>          <dbl>#> 1 precision macro          0.631# Micro averaged multiclass precisionprecision(hpc_cv, obs, pred,estimator ="micro")#> # A tibble: 1 × 3#>   .metric   .estimator .estimate#>   <chr>     <chr>          <dbl>#> 1 precision micro          0.709

Calculating metrics onresamples

If you have multiple resamples of a model, you can use a metric on agrouped data frame to calculate the metric across all resamples atonce.

This calculates multiclass ROC AUC using the method described inHand, Till (2001), and does it across all 10 resamples at once.

hpc_cv%>%group_by(Resample)%>%roc_auc(obs, VF:L)#> # A tibble: 10 × 4#>    Resample .metric .estimator .estimate#>    <chr>    <chr>   <chr>          <dbl>#>  1 Fold01   roc_auc hand_till      0.813#>  2 Fold02   roc_auc hand_till      0.817#>  3 Fold03   roc_auc hand_till      0.869#>  4 Fold04   roc_auc hand_till      0.849#>  5 Fold05   roc_auc hand_till      0.811#>  6 Fold06   roc_auc hand_till      0.836#>  7 Fold07   roc_auc hand_till      0.825#>  8 Fold08   roc_auc hand_till      0.846#>  9 Fold09   roc_auc hand_till      0.828#> 10 Fold10   roc_auc hand_till      0.812

Autoplot methods foreasy visualization

Curve based methods such asroc_curve(),pr_curve() andgain_curve() all haveggplot2::autoplot() methods that allow for powerful andeasy visualization.

library(ggplot2)hpc_cv%>%group_by(Resample)%>%roc_curve(obs, VF:L)%>%autoplot()

Faceted ROC curve. 1-specificity along the x-axis, sensitivity along the y-axis. Facets include the classes F, L, M, and VF. Each facet shows 10 lines colored to correspond to a resample. All the lines are quite overlapping. With VF having the tightest and highest values.

Contributing

This project is released with aContributorCode of Conduct. By contributing to this project, you agree to abideby its terms.


[8]ページ先頭

©2009-2025 Movatter.jp