Movatterモバイル変換


[0]ホーム

URL:


tabshiftr

CRAN_Status_BadgeR-CMD-checkCoverage StatusLifecycle:maturing

Overview

Data are stored in many different ways in tables or spreadsheetsbecause no strict semantic or topographic standards for the organisationof tables are commonly accepted. In the R environment thetidyparadigm is a first step towards interoperability of data, in that itrequires a certain arrangement of tables, where variables are recordedin columns and observations in rows (seehttps://tidyr.tidyverse.org/). Tables can be tidied(i.e., brought into a tidy arrangement) via packages such astidyr, however, all functions that deal with reshapingtables to date require data that are already organised intotopologically coherent, rectangular tables. This is often violated inpractice, especially in data that are scraped off of the internet.

tabshiftr fills this gap in the toolchain towards moreinteroperable data viaschema descriptions that are builtwith setters and debugged with getters and areorganise()function that ties everything together.

Installation

  1. Install the official version from CRAN:
install.packages("tabshiftr")

or the latest development version from github:

devtools::install_github("EhrmannS/tabshiftr")
  1. Thevignettegives an introduction, provides an instruction on how to set up schemadescriptions by going step by step through certain dimensions ofdisorganisation to show which table arrangements can be reorganised andhow that works.

Examples

A disorganised table may look like the following table:

library(tabshiftr)library(knitr)# a rather disorganised table with messy clusters and a distinct variableinput<- tabs2shift$clusters_messykable(input)
X1X2X3X4X5X6X7
commoditiesharvestedproduction....
unit 1......
soybean11111112year 1...
maize11211122year 1...
soybean12111212year 2...
maize12211222year 2...
.......
commoditiesharvestedproductioncommoditiesharvestedproduction.
unit 2..unit 3...
soybean21112112soybean31113112year 1
maize21212122maize31213122year 1
soybean22112212soybean32113212year 2
maize22212222maize32213222year 2

If we were to transform this data into tidy data by merely using thefunctions intidyr (or the extendedtidyversein general), we’d potentially end up with a massive algorithm,especially for such complicated table arrangements. For other tablesthat may or may not be as complicated, we’d have to set up yet morealgorithms and while a pipeline of tidy functions is relatively easy toset up, it would still become very laborious to repeat this for thedozens of potential table arrangements. Intabshiftr wesolve that by describing the schema of the input table and providingthis schema description to thereorganise() function. Thisrequires us to use a vastly smaller set of code and makes it thus a lotmore efficient to bring multiple heterogeneous data into aninteroperable format.

# put together schema description by ...# ... identifying cluster positionsschema<-setCluster(id ="territories",left =c(1,1,4),top =c(1,8,8))# ... specifying the cluster ID as id variable (obligatory for when we deal with clusters)schema<- schema%>%setIDVar(name ="territories",columns =c(1,1,4),rows =c(2,9,9))# ... specifying a distinct variable (explicit position)schema<- schema%>%setIDVar(name ="year",columns =4,rows =c(3:6),distinct =TRUE)# ... specifying a tidy variable (by giving the column values)schema<- schema%>%setIDVar(name ="commodities",columns =c(1,1,4))# ... identifying the (tidy) observed variablesschema<- schema%>%setObsVar(name ="harvested",columns =c(2,2,5))%>%setObsVar(name ="production",columns =c(3,3,6))# to potentially debug the schema description, first validate the schema ...schema_valid<-validateSchema(schema = schema,input = input)# ... and extract parts of it per cluster (also check out the other getters in# this package)getIDVars(schema = schema_valid,input = input)#> [[1]]#> [[1]]$year#> # A tibble: 4 × 1#>   X4#>   <chr>#> 1 year 1#> 2 year 1#> 3 year 2#> 4 year 2#>#> [[1]]$commodities#> # A tibble: 4 × 1#>   X1#>   <chr>#> 1 soybean#> 2 maize#> 3 soybean#> 4 maize#>#>#> [[2]]#> [[2]]$year#> # A tibble: 4 × 1#>   X4#>   <chr>#> 1 year 1#> 2 year 1#> 3 year 2#> 4 year 2#>#> [[2]]$commodities#> # A tibble: 4 × 1#>   X1#>   <chr>#> 1 soybean#> 2 maize#> 3 soybean#> 4 maize#>#>#> [[3]]#> [[3]]$year#> # A tibble: 4 × 1#>   X4#>   <chr>#> 1 year 1#> 2 year 1#> 3 year 2#> 4 year 2#>#> [[3]]$commodities#> # A tibble: 4 × 1#>   X4#>   <chr>#> 1 soybean#> 2 maize#> 3 soybean#> 4 maizegetObsVars(schema = schema_valid,input = input)#> [[1]]#> [[1]]$harvested#> # A tibble: 4 × 1#>   X2#>   <chr>#> 1 1111#> 2 1121#> 3 1211#> 4 1221#>#> [[1]]$production#> # A tibble: 4 × 1#>   X3#>   <chr>#> 1 1112#> 2 1122#> 3 1212#> 4 1222#>#>#> [[2]]#> [[2]]$harvested#> # A tibble: 4 × 1#>   X2#>   <chr>#> 1 2111#> 2 2121#> 3 2211#> 4 2221#>#> [[2]]$production#> # A tibble: 4 × 1#>   X3#>   <chr>#> 1 2112#> 2 2122#> 3 2212#> 4 2222#>#>#> [[3]]#> [[3]]$harvested#> # A tibble: 4 × 1#>   X5#>   <chr>#> 1 3111#> 2 3121#> 3 3211#> 4 3221#>#> [[3]]$production#> # A tibble: 4 × 1#>   X6#>   <chr>#> 1 3112#> 2 3122#> 3 3212#> 4 3222# alternatively, if the clusters are regular, relative values starting from the# cluster origin could be setschema_alt<-setCluster(id ="territories",left =c(1,1,4),top =c(1,8,8))%>%setIDVar(name ="territories",columns =1,rows =.find(row =2,relative =TRUE))%>%setIDVar(name ="year",columns =4,rows =c(3:6),distinct =TRUE)%>%setIDVar(name ="commodities",columns =.find(col =1,relative =TRUE))%>%setObsVar(name ="harvested",columns =.find(col =2,relative =TRUE))%>%setObsVar(name ="production",columns =.find(col =3,relative =TRUE))

Thereorganise() function carries out the steps ofvalidating, extracting the variables, pivoting the tentative output andputting the final table together automatically, so it merely requiresthe finalisedschema and theinput table.

schema# has a pretty print function#>   3 clusters#>     origin : 1|1, 8|1, 8|4  (row|col)#>     id     : territories#>#>    variable      type       row    col    dist#>   ------------- ---------- ------ ------ ------#>    territories   id         2, 9   1, 4   F#>    year          id         3:6    4      T#>    commodities   id                1, 4   F#>    harvested     observed          2, 5   F#>    production    observed          3, 6   Foutput<-reorganise(input = input,schema = schema)kable(output)
territoriesyearcommoditiesharvestedproduction
unit 1year 1maize11211122
unit 1year 1soybean11111112
unit 1year 2maize12211222
unit 1year 2soybean12111212
unit 2year 1maize21212122
unit 2year 1soybean21112112
unit 2year 2maize22212222
unit 2year 2soybean22112212
unit 3year 1maize31213122
unit 3year 1soybean31113112
unit 3year 2maize32213222
unit 3year 2soybean32113212

Contributions

Acknowledgement

This work was supported by funding to Carsten Meyer through theFlexpool mechanism of the German Centre for Integrative BiodiversityResearch (iDiv) (FZT-118, DFG).


[8]ページ先頭

©2009-2025 Movatter.jp