| Title: | Canonical Associative Learning Models and their Representations |
| Version: | 0.8.1 |
| Description: | Implementations of canonical associative learning models, with tools to run experiment simulations, estimate model parameters, and compare model representations. Experiments and results are represented using S4 classes and methods. |
| License: | GPL (≥ 3) |
| URL: | https://github.com/victor-navarro/calmr,https://victornavarro.org/calmr/ |
| BugReports: | https://github.com/victor-navarro/calmr/issues |
| Depends: | R (≥ 3.5) |
| Imports: | data.table, future, future.apply, GA, ggnetwork, ggplot2,grid, lifecycle, methods, network, patchwork, progressr, rlang,stats, tools, utils |
| Suggests: | DiagrammeR, knitr, rmarkdown, spelling, testthat (≥ 3.0.0) |
| VignetteBuilder: | knitr |
| Config/testthat/edition: | 3 |
| Encoding: | UTF-8 |
| Language: | en-US |
| LazyData: | true |
| RoxygenNote: | 7.3.2 |
| Collate: | 'anccr_helpers.R' 'assertions.R' 'calmr_verbosity.R''compare_models.R' 'data.R' 'fit_helpers.R' 'fit_model.R''get_parameters.R' 'get_timings.R' 'get_design.R''heidi_helpers.R' 'information_functions.R' 'make_experiment.R''model_graphs.R' 'model_parsers.R' 'model_support_functions.R''parallel_helpers.R' 'parse_design.R' 'phase_parser.R''plotting_functions.R' 'plotting_options.R' 'rsa_functions.R''run_experiment.R' 'set_calmr_palette.R' 'td_helpers.R''class_design.R' 'class_experiment.R' 'class_fit.R''class_rsa.R' 'class_model.R' 'class_model_ANCCR.R''class_model_HDI2020.R' 'class_model_HD2022.R''class_model_MAC1975.R' 'class_model_PKH1982.R''class_model_RAND.R' 'class_model_RW1972.R''class_model_SM2007.R' 'class_model_TD.R' 'calmr-package.R' |
| NeedsCompilation: | no |
| Packaged: | 2025-09-08 13:19:03 UTC; sapvn2 |
| Author: | Victor Navarro [aut, cre, cph] |
| Maintainer: | Victor Navarro <navarrov@cardiff.ac.uk> |
| Repository: | CRAN |
| Date/Publication: | 2025-09-08 14:50:08 UTC |
calmr: Canonical Associative Learning Models and their Representations
Description

Implementations of canonical associative learning models, with tools to run experiment simulations, estimate model parameters, and compare model representations. Experiments and results are represented using S4 classes and methods.
Author(s)
Maintainer: Victor Navarronavarrov@cardiff.ac.uk [copyright holder]
See Also
Useful links:
Report bugs athttps://github.com/victor-navarro/calmr/issues
S4 class for calmr designs
Description
S4 class for calmr designs
Slots
design:A list containing design information.
mapping:A list containing the object mapping.
raw_design:The original data.frame.
CalmrDesign methods
Description
S4 methods forCalmrDesign class.
Usage
## S4 method for signature 'CalmrDesign'show(object)## S4 method for signature 'CalmrDesign'mapping(object)## S4 method for signature 'CalmrDesign'trials(object)Arguments
object | A |
Value
show() returns NULL (invisibly).
mapping() returns a list with trial mappings.
trials() returns NULL (invisibly).
S4 class for calmr experiments.
Description
S4 class for calmr experiments.
Slots
design:ACalmrDesign object.
groups:A string specifying the groups in the design.
model:A string specifying the model used.
parameters:A list with the parameters used, per group.
timings:A list with the timings used in the design.
experiences:A list with the experiences for the model.
results:A list with aggregated results.
models:The models associated with the iteration.
.groups:Internal. The groups associated with the iteration.
.iter:Internal. The iteration number.
.seed:The seed used to generate the experiment.
See Also
CalmrExperiment-methods
CalmrExperiment methods
Description
S4 methods forCalmrExperiment class.
Usage
## S4 method for signature 'CalmrExperiment'show(object)## S4 method for signature 'CalmrExperiment'design(x)## S4 method for signature 'CalmrExperiment'trials(object)## S4 method for signature 'CalmrExperiment'parameters(x)## S4 replacement method for signature 'CalmrExperiment'parameters(x) <- value## S4 method for signature 'CalmrExperiment'experiences(x)## S4 replacement method for signature 'CalmrExperiment'experiences(x) <- value## S4 method for signature 'CalmrExperiment'results(object)## S4 method for signature 'CalmrExperiment'raw_results(object)## S4 method for signature 'CalmrExperiment'parsed_results(object)## S4 method for signature 'CalmrExperiment'length(x)## S4 method for signature 'CalmrExperiment'parse(object, outputs = NULL)## S4 method for signature 'CalmrExperiment'aggregate(x, outputs = NULL)## S4 method for signature 'CalmrExperiment'plot(x, type = NULL, ...)## S4 method for signature 'CalmrExperiment'graph(x, ...)## S4 method for signature 'CalmrExperiment'timings(x)## S4 replacement method for signature 'CalmrExperiment'timings(x) <- value## S4 method for signature 'CalmrExperiment'filter(x, trial_types = NULL, phases = NULL, stimuli = NULL)Arguments
object,x | A |
value | A list of parameters (or list of parameter lists). |
outputs | A character vector specifying the model outputs to parse. |
type | A character vector specifying the type(s) of plots to create.Defaults to NULL. Seesupported_plots. |
... | Extra arguments passed to |
trial_types | A character vector with trial types to filter. |
phases | A character vector with phase names to filter. |
stimuli | A character vector with stimulus names to filter. |
Value
show() returns NULL (invisibly).
design() returns theCalmrDesign contained in the object.
trials() returns NULL (invisibly).
parameters() returns the list of parameterscontained in the object.
parameters()<- returns the object after updating parameters.
experiences() returns a list ofdata.frame objectscontaining model training routines.
experiences()<- returns the object after updating experiences.
results() returns adata.table objects with aggregated results.
raw_results() returns a list with raw model results.
parsed_results() returns a list ofdata.tableobjects with parsed results.
length() returns an integer specifying the total lengthof the experiment (groups by iterations).
parse() returns the object after parsing raw results.
aggregate() returns the object after aggregating parsed results.
plot() returns a list of 'ggplot' plot objects.
graph() returns a list of 'ggplot' plot objects.
timings() returns the list of timingscontained in the object.
timings()<- returns the object after updating timings.
filter() returns the object after filteringparsed aggregated results
S4 class for calmr Fit
Description
S4 class for calmr Fit
Slots
nloglik:Numeric. Negative log likelihood of the fit
best_pars:Numeric. Best fitting parameters
model_pars:Numeric. Parameters used in the model function
link_pars:Numeric. Parameters used in the link function
data:Numeric. Data used for fit
model_function:Function. Model function
link_function:Function. Link function
ll_function:Function. Objective function(usually nloglikelihood)
optimizer_options:List. Options used for the optimizer
extra_pars:List. Extra parameterspassed to the fit call (...)
See Also
CalmrFit-methods
CalmrFit methods
Description
S4 methods forCalmrFit class.
Usage
## S4 method for signature 'CalmrFit'show(object)## S4 method for signature 'CalmrFit'predict(object, type = "response", ...)## S4 method for signature 'CalmrFit'NLL(object)## S4 method for signature 'CalmrFit'AIC(object, k = 2)## S4 method for signature 'CalmrFit'BIC(object)Arguments
object | A |
type | A string specifying the type of prediction to generate. |
... | Extra named arguments. |
k | Penalty term for |
Details
Withtype = "response", thepredict() functionpassed model responses to the link function used to fit the model.
The AIC is defined as2*k - 2*-NLL, where k is a penaltyterm and NLL is the negative log likelihood of the model.
The BIC is defined asp*log(n) - 2*-NLL, where p is the numberof parameters in the model and n is the number of observations
Value
show()returns NULL (invisibly).predict()returns a numeric vector.NLL()returns the negative log likelihood of the model.AIC()returns the Akaike Information Criterion (AIC) of the model.BIC()returns the Bayesian Information Criterion (BIC) of the model.
S4 class for calmr Models
Description
S4 class for calmr Models
Slots
- model_name
A model name string
- outputs
A character vector with model outputs
- parameters
A list with the model with model parameters
- default_parameters
A list with the default model parameters
- .internal_states
A character vector with internal states
- .is_timed
A logical indicating if the model is timed
- .associations
A character vector with associations output name
- .dnames_map
A list with data names mapping for outputs
- .parse_map
A list with parse functions for outputs
- .formula_map
A list with formula mapping for outputs
- .plots_map
A list with plot functions for outputs
- .last_experience
A data.frame with the last experience run
- .last_raw_results
A list with the last raw results
- .last_parsed_results
A list with the last parsed results
CalmrModel methods
Description
S4 methods forCalmrModel
Usage
## S4 method for signature 'CalmrModel'run(object, experience, mapping, timings, ...)## S4 method for signature 'CalmrModel'parameters(x)## S4 replacement method for signature 'CalmrModel'parameters(x) <- value## S4 method for signature 'CalmrModel'raw_results(object)## S4 method for signature 'CalmrModel'parsed_results(object)## S4 method for signature 'CalmrModel'show(object)## S4 method for signature 'CalmrModel'parse(object, outputs = object@outputs)## S4 method for signature 'CalmrModel'plot(x, type = NULL, ...)## S4 method for signature 'CalmrModel'graph(x, ...)## S4 method for signature 'ANCCR'run(object, experience, mapping, timings, ..., debug = FALSE, debug_t = -1)## S4 method for signature 'HDI2020'run(object, experience, mapping, ...)## S4 method for signature 'HD2022'run(object, experience, mapping, ...)## S4 method for signature 'MAC1975'run(object, experience, mapping, ...)## S4 method for signature 'PKH1982'run(object, experience, mapping, ...)## S4 method for signature 'RAND'run(object, experience, mapping, ...)## S4 method for signature 'RW1972'run(object, experience, mapping, ...)## S4 method for signature 'SM2007'run( object, experience, mapping, debug = FALSE, comparator_func = .witnauer_comparator_proc, ...)## S4 method for signature 'TD'run(object, experience, mapping, timings, ...)Arguments
object | ACalmrModel object. |
experience | A data.frame specifying trials as rows,as returned by |
mapping | A named list specifying trial and stimulus mapping,as returned by |
timings | A named list specifying timings for the model. Only usedfor timed models. |
... | Additional named arguments. |
x | ACalmrModel object. |
value | A list of parameters to set. |
outputs | A character vector specifying the outputs to parse.If not specified, all outputs of the model will be parsed. |
type | A character vector specifying thetypes of plots to generate (should be model outputs). |
debug | A logical to print debugging messages. |
debug_t | A trial to debug at. |
comparator_func | The function for the comparator process. |
Value
run() returns theCalmrModel afterrunning the phases in the design.
parameters() returns the parametersof theCalmrModel object.
parameters()<- sets the parameters of aCalmrModel object.
raw_results() returns the lastraw results of theCalmrModel object.
parsed_results() returns the lastparsed results of theCalmrModel object.
show() returns NULL (invisibly).
parse() returnsCalmrModel with parsed results.
plot() returns a list of 'ggplot' plot objects.
graph() returns a 'ggplot' object.
Note
Therun method changes some internalstates of the model (if appropriate) andpopulates the.last_raw_results slot with the results of the run.
S4 class for calmr representational similarity analysis
Description
S4 class for calmr representational similarity analysis
Slots
corr_mat:An array containing the correlation matrix
distances:A list of pairwise distance matrices
args:A list of the arguments used to create the object.
test_data:A list with permutation data,only populated after testing the object.
CalmrRSA methods
Description
S4 methods forCalmrRSA class.
Usage
## S4 method for signature 'CalmrRSA'show(object)## S4 method for signature 'CalmrRSA'test(object, n_samples = 1000, p = 0.95)## S4 method for signature 'CalmrRSA'plot(x)Arguments
object,x | A |
n_samples | The number of samples for the permutation test(default = 1e3) |
p | The critical threshold level for the permutation test(default = 0.95) |
Value
show()returns NULL (invisibly).test()returns theCalmrRSAobject with permutation test data.plot()returns a list of 'ggplot' plot objects.
Create a graph with calmr data
Description
patch_graphs() patches graphs with 'patchwork'
Usage
calmr_model_graph( x, loops = TRUE, limits = max(abs(x$value)) * c(-1, 1), colour_key = FALSE, t = max(x$trial), options = get_graph_opts())patch_graphs(graphs, selection = names(graphs))get_graph_opts(graph_size = "small")Arguments
x | A |
loops | Logical. Whether to draw arrows back and forth |
limits | Numerical. Limits for color scale.Defaults to max(abs(x$value))*c(-1,1). |
colour_key | Logical. Whether to show the color key |
t | The trial from which weights are obtained(defaults to the maximum trial in the data). |
options | A list with graph options, as returned by |
graphs | A list of (named) graphs, as returned by |
selection | A character or numeric vectordetermining the plots to patch. |
graph_size | A string (either "small" or "large").to return default values for small or large graphs |
trial | Numerical. The trial to graph. |
Value
A 'ggplot' object
patch_graphs() returns a 'patchwork' object
A list with graph options, to be passed toggnetwork::geom_nodes().
Note
You should probably be getting graphs viathe graph method forCalmrExperiment.
Set verbosity options for calmr
Description
Whether to show verbosity messages and progress bars
Usage
calmr_verbosity(verbose)Arguments
verbose | A logical |
Value
The list of progressr handlers (invisibly).
Note
Progress bars are handled by the progressr package.This is just a convenience function.
See package 'progressr' for further details.
Run models given a set of parameters
Description
Run models given a set of parameters
Usage
compare_models(x, models = NULL, ...)Arguments
x | A list ofCalmrExperiment objects or a designdata.frame. |
models | A character vector of length m, specifying the models to run.Ignored if x is a list ofCalmrExperiment objects. |
... | Arguments passed tomake_experiment. |
Value
A list ofCalmrExperiment objects
Examples
# By making experiment beforehand (recommended)df <- get_design("blocking")models <- c("HD2022", "RW1972", "PKH1982")exps <- lapply(models, function(m) { make_experiment(df, parameters = get_parameters(df, model = m), model = m )})comp <- compare_models(exps)# By passing minimal arguments (not recommended; default parameters)comp <- compare_models(df, models = models)Fit model to data
Description
Obtain MLE estimates for model, given data.
Usage
fit_model(data, model_function, optimizer_options, file = NULL, ...)Arguments
data | A numeric vector containing data to fit model against. |
model_function | A function that runs the model andreturns data.frame of value, organized as in |
optimizer_options | A list with options for theoptimizer, as returned byget_optimizer_opts. |
file | A path to save the model fit. If the argumentsto the fit call are found to be identical to those in the file,the model just gets loaded. |
... | Extra parameters passed to the optimizer call. |
Value
ACalmrFit object
Note
See the calmr_fits vignette for examples
See Also
Examples
# Make some fake datadf <- data.frame(g = "g", p1 = "!3A>(US)")pars <- get_parameters(df, model = "RW1972")pars$alphas["US"] <- 0.9exper <- make_experiment(df, parameters = pars, model = "RW1972")res <- run_experiment(exper, outputs = "responses")responses <- results(res)$responses$value# define model functionmodel_fun <- function(p, ex) { np <- parameters(ex) np[[1]]$alphas[] <- p parameters(ex) <- np results(run_experiment(ex))$responses$value}# Get optimizer optionsoptim_opts <- get_optimizer_opts( model_pars = names(pars$alphas), ll = rep(.05, 2), ul = rep(.95, 2), optimizer = "optim", family = "identity")optim_opts$initial_pars[] <- rep(.6, 2)fit_model(responses, model_fun, optim_opts, ex = exper, method = "L-BFGS-B", control = list(maxit = 1))Get basic designs
Description
Get basic designs
Usage
get_design(design_name = NULL)Arguments
design_name | A string specifying a design name (default = NULL) |
Value
If design_name is not NULL, a data.frame containing the design.Otherwise, a list containing all available designs.
See Also
Examples
names(get_design())get_design("blocking")Get optimizer options
Description
Get optimizer options
Usage
get_optimizer_opts( model_pars, initial_pars = rep(NA, length(model_pars)), ll = rep(NA, length(model_pars)), ul = rep(NA, length(model_pars)), optimizer = NULL, family = NULL)Arguments
model_pars | A character vector specifying the name ofthe parameters to fit. |
initial_pars | A numeric vector specifying the initialparameter values to #' evaluate the model at (required by |
ll,ul | A numeric vector specifying the lower and upperlimits of the parameters to fit, respectively |
optimizer | A string specifying the optimizer to use.One from |
family | A string specifying the family function togenerate responses (and calculate the likelihood function with).One from |
Value
A list with optimizer options.
Note
Whenever a family function other than the identity is used,the family-specific parameters will always be appended tothe end of the relevant lists.
See Also
Get model parameters
Description
Get model parameters
Usage
get_parameters(design, model)Arguments
design | A |
model | A string specifying a model. One in |
Value
A list with model parameters depending on model
Examples
block <- get_design("blocking")get_parameters(block, model = "SM2007")Get timing design parameters
Description
Get timing design parameters
Usage
get_timings(design, model)Arguments
design | A |
model | One of |
Value
A list of timing design parameters.
Examples
block <- get_design("blocking")get_timings(block, model = "TD")Make CalmrExperiment
Description
Makes aCalmrExperiment object containingthe arguments necessary to run an experiment.
Usage
make_experiment( design, model, parameters = NULL, timings = NULL, iterations = 1, miniblocks = TRUE, seed = NULL, .callback_fn = NULL, ...)Arguments
design | A design |
model | A string specifying the model name. One of |
parameters | Optional. Parameters for a model asreturned by |
timings | Optional. Timings for a time-based design asreturned by |
iterations | An integer specifying the number of iterations per group.Default = 1. |
miniblocks | Whether to organize trials in miniblocks. Default = TRUE. |
seed | A valid seed for the RNG to make the experiment.Default = NULL, in which case the current RNG is used. |
.callback_fn | A function for keeping track of progress. Internal use. |
... | Extra parameters passed to other functions. |
Value
ACalmrExperiment object.
Note
The miniblocks option will direct the sampling function to createequally-sized miniblocks with random trials within a phase.For example, the phase string "2A/2B" will create two miniblockswith one of each trial. The phase string "2A/4B" will create two miniblockswith one A trial, and 2 B trials. However, the phase string "2A/1B" willnot result in miniblocks, even if miniblocks here is set to TRUE.
See Also
Examples
des <- data.frame(Group = "G1", P1 = "10A>(US)")ps <- get_parameters(des, model = "HD2022")make_experiment( design = des, parameters = ps, model = "HD2022", iterations = 2)Model information functions
Description
An assortment of functions to return model information.
Usage
supported_models()supported_timed_models()supported_optimizers()supported_families()supported_plots(model = NULL)get_model(model)model_parameters(model = NULL)model_outputs(model = NULL)Arguments
model | A string specifying a model. One from |
Value
supported_models() returns a character vector.
supported_timed_models() returns a character vector.
supported_optimizers() returns a character vector.
supported_families() returns a character vector.
supported_plots() returns a character vector or list(if model is NULL).
get_model() returns aCalmrModel model instance.
model_parameters() returns a list or alist of lists (if model is NULL).
model_outputs() returns a character vector orlist (if model is NULL).
Examples
# Outputs and plots supported by the RW1972 modelmodel_outputs("RW1972")# Getting a model instance of the PKH1982 modelpkh_inst <- get_model("PKH1982")# Getting the `run` method for the MAC1975head(methods::getMethod("run", "MAC1975"), 10)# Getting the parameters required by SM2007model_parameters("SM2007")model_parameters("RW1972")Parse design data.frame
Description
Parse design data.frame
Usage
parse_design(df)Arguments
df | A |
Value
ACalmrDesign object.
Note
Each entry in even-numbered columns of df isa string formatted as perphase_parser().
See Also
Examples
df <- data.frame( Group = c("Group 1", "Group 2"), P1 = c("10AB(US)", "10A(US)"))parse_design(df)Rat responses from Patittucci et al. 2016
Description
A dataset containing rat nose pokes and leverpresses when levers were associated with different appetitive stimuli.
Usage
patiFormat
A data.frame with the following variables:
- subject
subject identifier
- block
the 2-session block of training (1 to 8)
- lever
lever presented on the trial: L = left; R = right
- us
the stimulus that followed the lever: P = pellet; S = sucrose
- response
the response: lp = lever press; np = nose poke
- rpert
responses per trial
...
Source
Patittucci et al. (2016). JEP:ALC
Parses a phase string
Description
Parses a phase string
Usage
phase_parser(phase_string)Arguments
phase_string | A string specifying trials within a phase. |
Value
A named list with:
- trial_info:
A trial-named list of lists.
- general_info:
General phase information.
Note
This function is meant for internal use only,but we expose it so you can test your strings.
See Also
Examples
# A silly (but valid) stringphase_parser("10#Rescorla>Wagner")# An invalid string that needs trial repetitions for one of trials.try(phase_parser("10#Rescorla/Wagner"))General plotting functions
Description
plot_targeted_tbins() plots targeted time data on a trial.
plot_tbins() plots non-targeted time data on a trial.
plot_targeted_trials() plots targeted trial data.
plot_trials() plots non-targeted trial data.
plot_targeted_typed_trials() plotstargeted trial data with a type.
plot_targeted_complex_trials() plotstargeted data with a third variable.
Usage
plot_targeted_tbins(data, t = max(data$trial))plot_tbins(data, t = max(data$trial))plot_targeted_trials(data)plot_trials(data)plot_targeted_typed_trials(data)plot_targeted_complex_trials(data, col)Arguments
data | A |
t | A numeric vector specifying the trial(s) to plot.Defaults to the last trial in data. |
col | A string specifying the column of the third variable. |
Value
plot_targeted_tbins() returns 'ggplot' object.
plot_tbins() returns 'ggplot' object.
plot_targeted_trials() returns 'ggplot' object.
plot_trials() returns 'ggplot' object.
plot_targeted_typed_trials() returns 'ggplot' object.
plot_targeted_complex_trials() returns 'ggplot' object.
Note
These functions are not meant to be used by non-developers.If you want to plot data from a model or an experiment,see theplot() method.All data must be parsed or aggregated, asreturned byresults() orparsed_results().
General plotting options
Description
plot_common_scale() rescales a list ofplots to have a common scale.
get_plot_opts() returns generic plotting options.
patch_plots() patches plots usingpatchwork package.
Usage
plot_common_scale(plots)get_plot_opts(common_scale = TRUE)patch_plots(plots, selection = names(plots), plot_options = get_plot_opts())Arguments
plots | A list of (named) plots, as returned by |
common_scale | Logical specifying whether tohave plots in a common scale. |
selection | A character or numeric vector determining the plots to patch |
plot_options | A list of plot options as returned by |
Value
plot_common_scale() returns a list of plots.
get_plot_opts() returns a list.
patch_plots() returns apatchwork object.
Perform representational similarity analysis
Description
Perform representational similarity analysis
Usage
rsa(x, comparisons, test = FALSE, ...)Arguments
x | A list ofCalmrExperiment objects |
comparisons | A model-named list containing the modeloutputs to compare. |
test | Whether to test the RSA via permutation test. Default = FALSE. |
... | Additional parameters passed to |
Value
A CalmrRSA object
Note
The object returned by this functioncan be later tested via its owntest() method.
Examples
# Comparing the associations in three modelsexp <- data.frame( Group = c("A", "B"), P1 = c("!2(A)>(US)/1B>(US)", "!1(A)>(US)/2B>(US)"))models <- c("HD2022", "RW1972", "PKH1982")parameters <- sapply(models, get_parameters, design = exp)exp_res <- compare_models(exp, models = models)comparisons <- list( "HD2022" = c("associations"), "RW1972" = c("associations"), "PKH1982" = c("associations"))res <- rsa(exp_res, comparisons = comparisons)test(res, n_samples = 20)Run experiment
Description
Runs an experiment with minimal parameters.
Usage
run_experiment(x, outputs = NULL, parse = TRUE, aggregate = TRUE, ...)Arguments
x | ACalmrExperiment or design |
outputs | A character vector specifying which outputs toparse and aggregate. Defaults to NULL, in which caseall model outputs are parsed/aggregated. |
parse | A logical specifying whether the raw resultsshould be parsed. Default = TRUE. |
aggregate | A logical specifying whether the parsed resultsshould be aggregated. Default = TRUE. |
... | Arguments passed to other functions |
Value
ACalmrExperiment with results.
Examples
# Using a data.frame only (throws warning)df <- get_design("relative_validity")run_experiment(df, model = "RW1972")# Using custom parametersdf <- get_design("relative_validity")pars <- get_parameters(df, model = "HD2022")pars$alphas["US"] <- 0.6run_experiment(df, parameters = pars, model = "HD2022")# Using make_experiment, for more iterationsdf <- get_design("blocking")pars <- get_parameters(df, model = "SM2007")exper <- make_experiment(df, parameters = pars, model = "SM2007", iterations = 4)run_experiment(exper)# Only parsing the associations in the model, without aggregationrun_experiment(exper, outputs = "associations", aggregate = FALSE)Get/set the colour/fill palette for plots
Description
Get/set the colour/fill palette for plots
Usage
set_calmr_palette(palette = NULL)Arguments
palette | A string specifying the available palettes.If NULL, returns available palettes. |
Value
The old palette (invisibly) if palette is not NULL.Otherwise, a character vector of available palettes.
Note
Changes here do not affect the palette used in graphs.
Set reward parameters for ANCCR model
Description
Set reward parameters for ANCCR model
Usage
set_reward_parameters(parameters, rewards = c("US"))Arguments
parameters | A list of parameters, as returned by |
rewards | A character vector specifying the reward stimuli.Default = |
Value
A list of parameters
Note
The default behaviour ofget_parameters for the ANCCR model is toset every reward-related parameter to its non-zero default value.This function will set those parameters to zero for non-reward stimuli