Movatterモバイル変換


[0]ホーム

URL:


xgb2sql: Convert Trained 'XGBoost' Model to SQL Query

This tool enables in-database scoring of 'XGBoost' models built in R, by translating trained model objects into SQL query. 'XGBoost' <https://github.com/dmlc/xgboost> provides parallel tree boosting (also known as gradient boosting machine, or GBM) algorithms in a highly efficient, flexible and portable way. GBM algorithm is introduced by Friedman (2001) <doi:10.1214/aos/1013203451>, and more details on 'XGBoost' can be found in Chen & Guestrin (2016) <doi:10.1145/2939672.2939785>.

Version:0.1.3
Depends:R (≥ 3.1.0)
Imports:xgboost (≥ 3.1.2.1),data.table (≥ 1.12.0)
Suggests:ggplot2,knitr,rmarkdown
Published:2025-12-12
DOI:10.32614/CRAN.package.xgb2sql
Author:Chengjun Hou [aut, cre], Abhishek Bishoyi [aut]
Maintainer:Chengjun Hou <chengjun.hou at gmail.com>
BugReports:https://github.com/chengjunhou/xgb2sql/issues
License:MIT + fileLICENSE
URL:https://github.com/chengjunhou/xgb2sql
NeedsCompilation:no
Materials:README,NEWS
CRAN checks:xgb2sql results

Documentation:

Reference manual:xgb2sql.html ,xgb2sql.pdf
Vignettes:Deploy XGBoost Model as SQL Query (source,R code)

Downloads:

Package source: xgb2sql_0.1.3.tar.gz
Windows binaries: r-devel:xgb2sql_0.1.2.zip, r-release:xgb2sql_0.1.3.zip, r-oldrel:xgb2sql_0.1.3.zip
macOS binaries: r-release (arm64):xgb2sql_0.1.3.tgz, r-oldrel (arm64):xgb2sql_0.1.3.tgz, r-release (x86_64):xgb2sql_0.1.3.tgz, r-oldrel (x86_64):xgb2sql_0.1.3.tgz
Old sources: xgb2sql archive

Linking:

Please use the canonical formhttps://CRAN.R-project.org/package=xgb2sqlto link to this page.


[8]ページ先頭

©2009-2025 Movatter.jp