Provides access to word predictability estimates using large language models (LLMs) based on 'transformer' architectures via integration with the 'Hugging Face' ecosystem <https://huggingface.co/>. The package interfaces with pre-trained neural networks and supports both causal/auto-regressive LLMs (e.g., 'GPT-2') and masked/bidirectional LLMs (e.g., 'BERT') to compute the probability of words, phrases, or tokens given their linguistic context. For details on GPT-2 and causal models, see Radford et al. (2019) <https://storage.prod.researchhub.com/uploads/papers/2020/06/01/language-models.pdf>, for details on BERT and masked models, see Devlin et al. (2019) <doi:10.48550/arXiv.1810.04805>. By enabling a straightforward estimation of word predictability, the package facilitates research in psycholinguistics, computational linguistics, and natural language processing (NLP).
| Version: | 1.0.3 |
| Depends: | R (≥ 4.1.0) |
| Imports: | cachem,data.table,memoise,reticulate,rstudioapi, stats,tidyselect,tidytable (≥ 0.7.2), utils |
| Suggests: | brms,knitr, parallel,rmarkdown,spelling,testthat (≥3.0.0),tictoc,covr |
| Published: | 2025-04-07 |
| DOI: | 10.32614/CRAN.package.pangoling |
| Author: | Bruno Nicenboim |
| Maintainer: | Bruno Nicenboim <b.nicenboim at tilburguniversity.edu> |
| BugReports: | https://github.com/ropensci/pangoling/issues |
| License: | MIT + fileLICENSE |
| URL: | https://docs.ropensci.org/pangoling/,https://github.com/ropensci/pangoling |
| NeedsCompilation: | no |
| Language: | en-US |
| Citation: | pangoling citation info |
| Materials: | NEWS |
| CRAN checks: | pangoling results |
| Package source: | pangoling_1.0.3.tar.gz |
| Windows binaries: | r-devel:pangoling_1.0.3.zip, r-release:pangoling_1.0.3.zip, r-oldrel:pangoling_1.0.3.zip |
| macOS binaries: | r-release (arm64):pangoling_1.0.3.tgz, r-oldrel (arm64):pangoling_1.0.3.tgz, r-release (x86_64):pangoling_1.0.3.tgz, r-oldrel (x86_64):pangoling_1.0.3.tgz |
Please use the canonical formhttps://CRAN.R-project.org/package=pangolingto link to this page.