Movatterモバイル変換


[0]ホーム

URL:


scAnnotate: An Automated Cell Type Annotation Tool for Single-CellRNA-Sequencing Data

An entirely data-driven cell type annotation tools, which requires training data to learn the classifier, but not biological knowledge to make subjective decisions. It consists of three steps: preprocessing training and test data, model fitting on training data, and cell classification on test data. See Xiangling Ji,Danielle Tsao, Kailun Bai, Min Tsao, Li Xing, Xuekui Zhang.(2022)<doi:10.1101/2022.02.19.481159> for more details.

Version:0.3
Depends:R (≥ 4.0.0)
Imports:glmnet, stats,Seurat (≥ 5.0.1),harmony,SeuratObject
Suggests:knitr,testthat (≥ 3.0.0),rmarkdown
Published:2024-03-14
DOI:10.32614/CRAN.package.scAnnotate
Author:Xiangling Ji [aut], Danielle Tsao [aut], Kailun Bai [ctb], Min Tsao [aut], Li Xing [aut], Xuekui Zhang [aut, cre]
Maintainer:Xuekui Zhang <xuekui at uvic.ca>
License:GPL-3
URL:https://doi.org/10.1101/2022.02.19.481159
NeedsCompilation:no
Materials:NEWS
CRAN checks:scAnnotate results

Documentation:

Reference manual:scAnnotate.html ,scAnnotate.pdf
Vignettes:introduction (source,R code)

Downloads:

Package source: scAnnotate_0.3.tar.gz
Windows binaries: r-devel:scAnnotate_0.3.zip, r-release:scAnnotate_0.3.zip, r-oldrel:scAnnotate_0.3.zip
macOS binaries: r-release (arm64):scAnnotate_0.3.tgz, r-oldrel (arm64):scAnnotate_0.3.tgz, r-release (x86_64):scAnnotate_0.3.tgz, r-oldrel (x86_64):scAnnotate_0.3.tgz
Old sources: scAnnotate archive

Linking:

Please use the canonical formhttps://CRAN.R-project.org/package=scAnnotateto link to this page.


[8]ページ先頭

©2009-2025 Movatter.jp