Movatterモバイル変換


[0]ホーム

URL:


oottest: Out-of-TreatmentTesting in R

R-CMD-checkCodecov test coverage

oottest implements the out-of-treatment testing from Kuelpmann andKuzmics (2020). Out-of treatment testing allows for a direct, pairwiselikelihood comparison of theories, calibrated with pre-existingdata.

Installation

You can install the development version of oottest fromGitHub with:

# install.packages("devtools")devtools::install_github("PhilippKuelpmann/oottest")

Example

Input data should be structured in the following way:

Prediction data should be structured in the following way:

Here is a basic example on how you can use the vuong_statistic usingpredictions from two theories:

library(oottest)data_experiment<-c(1,2,3)prediction_theory_1<-c(1/3,1/3,1/3)prediction_theory_2<-c(1/4,1/4,1/2)vuong_statistic(data_experiment,pred_I = prediction_theory_1,pred_J = prediction_theory_2)

Here is a basic example how to compare three theories, using datafrom two treatments:

library(oottest)treatment_1<-c(1,2,3)treatment_2<-c(3,2,1)data_experiment<-data.frame(treatment_1, treatment_2)theory_1<-matrix(c(1/3,1/3,1/3,1/3,1/3,1/3),nrow =3,ncol=2)theory_2<-matrix(c(1/4,1/4,1/2,1/2,1/4,1/4),nrow =3,ncol=2)theory_3<-matrix(c(1/3,1/3,1/3,1/4,1/4,1/2),nrow =3,ncol=2)theories<-array(c(theory_1,theory_2,theory_3),dim=c(3,2,3))vuong_matrix(data_experiment, theories)

[8]ページ先頭

©2009-2025 Movatter.jp