Movatterモバイル変換


[0]ホーム

URL:


gscaLCA: Generalized Structure Component Analysis- Latent Class Analysis& Latent Class Regression

Execute Latent Class Analysis (LCA) and Latent Class Regression (LCR) by using Generalized Structured Component Analysis (GSCA). This is explained in Ryoo, Park, and Kim (2019) <doi:10.1007/s41237-019-00084-6>. It estimates the parameters of latent class prevalence and item response probability in LCA with a single line comment. It also provides graphs of item response probabilities. In addition, the package enables to estimate the relationship between the prevalence and covariates.

Version:0.0.5
Depends:R (≥ 2.10)
Imports:gridExtra,ggplot2,stringr,progress,psych,fastDummies,fclust,MASS,devtools,foreach,doSNOW,nnet
Suggests:knitr,rmarkdown
Published:2020-06-08
DOI:10.32614/CRAN.package.gscaLCA
Author:Jihoon Ryoo [aut], Seohee Park [aut, cre], Seoungeun Kim [aut], heungsun Hwaung [aut]
Maintainer:Seohee Park <hee6904 at gmail.com>
License:GPL-3
URL:https://github.com/hee6904/gscaLCA
NeedsCompilation:no
CRAN checks:gscaLCA results

Documentation:

Reference manual:gscaLCA.html ,gscaLCA.pdf

Downloads:

Package source: gscaLCA_0.0.5.tar.gz
Windows binaries: r-devel:gscaLCA_0.0.5.zip, r-release:gscaLCA_0.0.5.zip, r-oldrel:gscaLCA_0.0.5.zip
macOS binaries: r-release (arm64):gscaLCA_0.0.5.tgz, r-oldrel (arm64):gscaLCA_0.0.5.tgz, r-release (x86_64):gscaLCA_0.0.5.tgz, r-oldrel (x86_64):gscaLCA_0.0.5.tgz
Old sources: gscaLCA archive

Linking:

Please use the canonical formhttps://CRAN.R-project.org/package=gscaLCAto link to this page.


[8]ページ先頭

©2009-2025 Movatter.jp