Movatterモバイル変換


[0]ホーム

URL:


codacore: Learning Sparse Log-Ratios for Compositional Data

In the context of high-throughput genetic data, CoDaCoRe identifies a set of sparse biomarkers that are predictive of a response variable of interest (Gordon-Rodriguez et al., 2021) <doi:10.1093/bioinformatics/btab645>. More generally, CoDaCoRe can be applied to any regression problem where the independent variable is Compositional (CoDa), to derive a set of scale-invariant log-ratios (ILR or SLR) that are maximally associated to a dependent variable.

Version:0.0.4
Depends:R (≥ 3.6.0)
Imports:tensorflow (≥ 2.1),keras (≥ 2.3),pROC (≥ 1.17),R6 (≥2.5),gtools (≥ 3.8)
Suggests:zCompositions,testthat (≥ 2.1.0),knitr,rmarkdown
Published:2022-08-29
DOI:10.32614/CRAN.package.codacore
Author:Elliott Gordon-Rodriguez [aut, cre], Thomas Quinn [aut]
Maintainer:Elliott Gordon-Rodriguez <eg2912 at columbia.edu>
License:MIT + fileLICENSE
NeedsCompilation:no
SystemRequirements:TensorFlow (https://www.tensorflow.org/)
Citation:codacore citation info
Materials:README,NEWS
In views:CompositionalData
CRAN checks:codacore results

Documentation:

Reference manual:codacore.html ,codacore.pdf
Vignettes:my-vignette (source,R code)

Downloads:

Package source: codacore_0.0.4.tar.gz
Windows binaries: r-devel:codacore_0.0.4.zip, r-release:codacore_0.0.4.zip, r-oldrel:codacore_0.0.4.zip
macOS binaries: r-release (arm64):codacore_0.0.4.tgz, r-oldrel (arm64):codacore_0.0.4.tgz, r-release (x86_64):codacore_0.0.4.tgz, r-oldrel (x86_64):codacore_0.0.4.tgz
Old sources: codacore archive

Linking:

Please use the canonical formhttps://CRAN.R-project.org/package=codacoreto link to this page.


[8]ページ先頭

©2009-2025 Movatter.jp