RLescalation: Optimal Dose Escalation Using Deep Reinforcement Learning
An implementation to compute an optimal dose escalation rule using deep reinforcement learning in phase I oncology trials (Matsuura et al. (2023) <doi:10.1080/10543406.2023.2170402>). The dose escalation rule can directly optimize the percentages of correct selection (PCS) of the maximum tolerated dose (MTD).
| Version: | 1.0.3 |
| Imports: | glue,R6,nleqslv,reticulate, stats, utils,zip |
| Suggests: | knitr,rmarkdown |
| Published: | 2025-10-07 |
| DOI: | 10.32614/CRAN.package.RLescalation |
| Author: | Kentaro Matsuura [aut, cre, cph] |
| Maintainer: | Kentaro Matsuura <matsuurakentaro55 at gmail.com> |
| BugReports: | https://github.com/MatsuuraKentaro/RLescalation/issues |
| License: | MIT + fileLICENSE |
| URL: | https://github.com/MatsuuraKentaro/RLescalation |
| NeedsCompilation: | no |
| Language: | en-US |
| Materials: | README,NEWS |
| CRAN checks: | RLescalation results |
Documentation:
Downloads:
Linking:
Please use the canonical formhttps://CRAN.R-project.org/package=RLescalationto link to this page.