Movatterモバイル変換


[0]ホーム

URL:


BayesPIM: Bayesian Prevalence-Incidence Mixture Model

Models time-to-event data from interval-censored screening studies. It accounts for latent prevalence at baseline and incorporates misclassification due to imperfect test sensitivity. For usage details, see the package vignette ("BayesPIM_intro"). Further details can be found in T. Klausch, B. I. Lissenberg-Witte, and V. M. Coupe (2024), "A Bayesian prevalence-incidence mixture model for screening outcomes with misclassification", <doi:10.48550/arXiv.2412.16065>.

Version:1.0.0
Depends:R (≥ 3.5.0),coda
Imports:Rcpp,mvtnorm,MASS,ggamma,doParallel,foreach, parallel,actuar
LinkingTo:Rcpp
Suggests:knitr,rmarkdown
Published:2025-03-22
DOI:10.32614/CRAN.package.BayesPIM
Author:Thomas Klausch [aut, cre]
Maintainer:Thomas Klausch <t.klausch at amsterdamumc.nl>
BugReports:https://github.com/thomasklausch2/BayesPIM/issues
License:MIT + fileLICENSE
URL:https://github.com/thomasklausch2/bayespim
NeedsCompilation:yes
Materials:README
CRAN checks:BayesPIM results

Documentation:

Reference manual:BayesPIM.html ,BayesPIM.pdf
Vignettes:Introduction to BayesPIM (source,R code)

Downloads:

Package source: BayesPIM_1.0.0.tar.gz
Windows binaries: r-devel:BayesPIM_1.0.0.zip, r-release:BayesPIM_1.0.0.zip, r-oldrel:BayesPIM_1.0.0.zip
macOS binaries: r-release (arm64):BayesPIM_1.0.0.tgz, r-oldrel (arm64):BayesPIM_1.0.0.tgz, r-release (x86_64):BayesPIM_1.0.0.tgz, r-oldrel (x86_64):BayesPIM_1.0.0.tgz

Linking:

Please use the canonical formhttps://CRAN.R-project.org/package=BayesPIMto link to this page.


[8]ページ先頭

©2009-2025 Movatter.jp