Movatterモバイル変換


[0]ホーム

URL:


pfica: Independent Components Analysis Techniques for Functional Data

Performs smoothed (and non-smoothed) principal/independent components analysis of functional data. Various functional pre-whitening approaches are implemented as discussed in Vidal and Aguilera (2022) “Novel whitening approaches in functional settings", <doi:10.1002/sta4.516>. Further whitening representations of functional data can be derived in terms of a few principal components, providing an avenue to explore hidden structures in low dimensional settings: see Vidal, Rosso and Aguilera (2021) “Bi-smoothed functional independent component analysis for EEG artifact removal”, <doi:10.3390/math9111243>.

Version:0.1.3
Depends:R (≥ 2.10),fda
Imports:expm,whitening
Published:2023-01-06
DOI:10.32614/CRAN.package.pfica
Author:Marc VidalORCID iD [aut, cre], Ana Mª AguileraORCID iD [aut, ths]
Maintainer:Marc Vidal <marc.vidalbadia at ugent.be>
License:GPL-2 |GPL-3 [expanded from: GPL (≥ 2)]
URL:https://github.com/m-vidal/pfica
NeedsCompilation:no
CRAN checks:pfica results

Documentation:

Reference manual:pfica.html ,pfica.pdf

Downloads:

Package source: pfica_0.1.3.tar.gz
Windows binaries: r-devel:pfica_0.1.3.zip, r-release:pfica_0.1.3.zip, r-oldrel:pfica_0.1.3.zip
macOS binaries: r-release (arm64):pfica_0.1.3.tgz, r-oldrel (arm64):pfica_0.1.3.tgz, r-release (x86_64):pfica_0.1.3.tgz, r-oldrel (x86_64):pfica_0.1.3.tgz
Old sources: pfica archive

Linking:

Please use the canonical formhttps://CRAN.R-project.org/package=pficato link to this page.


[8]ページ先頭

©2009-2025 Movatter.jp