Movatterモバイル変換


[0]ホーム

URL:


swaglm: Fast Sparse Wrapper Algorithm for Generalized Linear Models andTesting Procedures for Network of Highly Predictive Variables

Provides a fast implementation of the SWAG algorithm for Generalized Linear Models which allows to perform a meta-learning procedure that combines screening and wrapper methods to find a set of extremely low-dimensional attribute combinations. The package then performs test on the network of selected models to identify the variables that are highly predictive by using entropy-based network measures.

Version:0.0.1
Imports:Rcpp,fastglm, stats,igraph,gdata,plyr,progress,DescTools,scales,fields
LinkingTo:Rcpp,RcppArmadillo
Suggests:knitr,MASS,rmarkdown
Published:2025-09-18
DOI:10.32614/CRAN.package.swaglm
Author:Lionel VoirolORCID iD [aut, cre], Yagmur Ozdemir [aut]
Maintainer:Lionel Voirol <lionelvoirol at hotmail.com>
License:AGPL-3
NeedsCompilation:yes
Materials:README
CRAN checks:swaglm results

Documentation:

Reference manual:swaglm.html ,swaglm.pdf
Vignettes:Run the SWAG algorithm for generalized linear models (source,R code)

Downloads:

Package source: swaglm_0.0.1.tar.gz
Windows binaries: r-devel:swaglm_0.0.1.zip, r-release:swaglm_0.0.1.zip, r-oldrel:swaglm_0.0.1.zip
macOS binaries: r-release (arm64):swaglm_0.0.1.tgz, r-oldrel (arm64):swaglm_0.0.1.tgz, r-release (x86_64):swaglm_0.0.1.tgz, r-oldrel (x86_64):swaglm_0.0.1.tgz

Linking:

Please use the canonical formhttps://CRAN.R-project.org/package=swaglmto link to this page.


[8]ページ先頭

©2009-2025 Movatter.jp