Movatterモバイル変換


[0]ホーム

URL:


serrsBayes: Bayesian Modelling of Raman Spectroscopy

Sequential Monte Carlo (SMC) algorithms for fitting a generalised additive mixed model (GAMM) to surface-enhanced resonance Raman spectroscopy (SERRS), using the method of Moores et al. (2016) <doi:10.48550/arXiv.1604.07299>. Multivariate observations of SERRS are highly collinear and lend themselves to a reduced-rank representation. The GAMM separates the SERRS signal into three components: a sequence of Lorentzian, Gaussian, or pseudo-Voigt peaks; a smoothly-varying baseline; and additive white noise. The parameters of each component of the model are estimated iteratively using SMC. The posterior distributions of the parameters given the observed spectra are represented as a population of weighted particles.

Version:0.5-0
Depends:R (≥ 3.5.0),Matrix,truncnorm, splines
Imports:Rcpp (≥ 0.11.3), methods
LinkingTo:Rcpp,RcppEigen
Suggests:testthat,knitr,rmarkdown,Hmisc
Published:2021-06-28
DOI:10.32614/CRAN.package.serrsBayes
Author:Matt MooresORCID iD [aut, cre], Jake CarsonORCID iD [aut], Benjamin Moskowitz [ctb], Kirsten Gracie [dtc], Karen FauldsORCID iD [dtc], Mark Girolami [aut], Engineering and Physical Sciences Research Council [fnd] (EPSRC programme grant ref: EP/L014165/1), University of Warwick [cph]
Maintainer:Matt Moores <mmoores at gmail.com>
BugReports:https://github.com/mooresm/serrsBayes/issues
License:GPL-2 |GPL-3 | fileLICENSE [expanded from: GPL (≥ 2) | file LICENSE]
URL:https://github.com/mooresm/serrsBayes,https://mooresm.github.io/serrsBayes/
NeedsCompilation:yes
Citation:serrsBayes citation info
Materials:README,NEWS
In views:ChemPhys
CRAN checks:serrsBayes results

Documentation:

Reference manual:serrsBayes.html ,serrsBayes.pdf
Vignettes:Introducing serrsBayes (source,R code)
Methanol example (source,R code)

Downloads:

Package source: serrsBayes_0.5-0.tar.gz
Windows binaries: r-devel:serrsBayes_0.5-0.zip, r-release:serrsBayes_0.5-0.zip, r-oldrel:serrsBayes_0.5-0.zip
macOS binaries: r-release (arm64):serrsBayes_0.5-0.tgz, r-oldrel (arm64):serrsBayes_0.5-0.tgz, r-release (x86_64):serrsBayes_0.5-0.tgz, r-oldrel (x86_64):serrsBayes_0.5-0.tgz
Old sources: serrsBayes archive

Linking:

Please use the canonical formhttps://CRAN.R-project.org/package=serrsBayesto link to this page.


[8]ページ先頭

©2009-2025 Movatter.jp