Movatterモバイル変換


[0]ホーム

URL:


doc2concrete: Measuring Concreteness in Natural Language

Models for detecting concreteness in natural language. This package is built in support of Yeomans (2021) <doi:10.1016/j.obhdp.2020.10.008>, which reviews linguistic models of concreteness in several domains. Here, we provide an implementation of the best-performing domain-general model (from Brysbaert et al., (2014) <doi:10.3758/s13428-013-0403-5>) as well as two pre-trained models for the feedback and plan-making domains.

Version:0.6.0
Depends:R (≥ 3.5.0)
Imports:tm,quanteda, parallel,glmnet,stringr,english,textstem,SnowballC,stringi
Suggests:knitr,rmarkdown,testthat
Published:2024-01-23
DOI:10.32614/CRAN.package.doc2concrete
Author:Mike Yeomans
Maintainer:Mike Yeomans <mk.yeomans at gmail.com>
License:MIT + fileLICENSE
NeedsCompilation:no
Materials:README
CRAN checks:doc2concrete results

Documentation:

Reference manual:doc2concrete.html ,doc2concrete.pdf
Vignettes:doc2concrete (source,R code)

Downloads:

Package source: doc2concrete_0.6.0.tar.gz
Windows binaries: r-devel:doc2concrete_0.6.0.zip, r-release:doc2concrete_0.6.0.zip, r-oldrel:doc2concrete_0.6.0.zip
macOS binaries: r-release (arm64):doc2concrete_0.6.0.tgz, r-oldrel (arm64):doc2concrete_0.6.0.tgz, r-release (x86_64):doc2concrete_0.6.0.tgz, r-oldrel (x86_64):doc2concrete_0.6.0.tgz
Old sources: doc2concrete archive

Reverse dependencies:

Reverse imports:DICEM

Linking:

Please use the canonical formhttps://CRAN.R-project.org/package=doc2concreteto link to this page.


[8]ページ先頭

©2009-2025 Movatter.jp