Movatterモバイル変換


[0]ホーム

URL:


scBSP: A Fast Tool for Single-Cell Spatially Variable GenesIdentifications on Large-Scale Data

Identifying spatially variable genes is critical in linking molecular cell functions with tissue phenotypes. This package utilizes a granularity-based dimension-agnostic tool, single-cell big-small patch (scBSP), implementing sparse matrix operation and KD tree methods for distance calculation, for the identification of spatially variable genes on large-scale data. The detailed description of this method is available at Wang, J. and Li, J. et al. 2023 (Wang, J. and Li, J. (2023), <doi:10.1038/s41467-023-43256-5>).

Version:1.1.0
Imports:Matrix,sparseMatrixStats,fitdistrplus,RANN,spam
Suggests:knitr,rmarkdown
Published:2025-09-01
DOI:10.32614/CRAN.package.scBSP
Author:Jinpu LiORCID iD [aut, cre], Yiqing Wang [aut]
Maintainer:Jinpu Li <castle.lee.f at gmail.com>
License:GPL-2 |GPL-3 [expanded from: GPL (≥ 2)]
NeedsCompilation:no
Materials:README
CRAN checks:scBSP results

Documentation:

Reference manual:scBSP.html ,scBSP.pdf

Downloads:

Package source: scBSP_1.1.0.tar.gz
Windows binaries: r-devel:scBSP_1.1.0.zip, r-release:scBSP_1.1.0.zip, r-oldrel:scBSP_1.1.0.zip
macOS binaries: r-release (arm64):scBSP_1.1.0.tgz, r-oldrel (arm64):scBSP_1.1.0.tgz, r-release (x86_64):scBSP_1.1.0.tgz, r-oldrel (x86_64):scBSP_1.1.0.tgz
Old sources: scBSP archive

Linking:

Please use the canonical formhttps://CRAN.R-project.org/package=scBSPto link to this page.


[8]ページ先頭

©2009-2025 Movatter.jp