Movatterモバイル変換


[0]ホーム

URL:


wideRhino: High-Dimensional Methods via Generalised Singular Decomposition

Construct a Canonical Variate Analysis Biplot via the Generalised Singular Value Decomposition, for cases when the number of samples is less than the number of variables. For more information on biplots, see Gower JC, Lubbe SG, Le Roux NJ (2011) <doi:10.1002/9780470973196> and for more information on the generalised singular value decomposition, see Edelman A, Wang Y (2020) <doi:10.1137/18M1234412>.

Version:1.0.2
Depends:R (≥ 4.1.0)
Imports:geigen,Matrix,MASS,ggplot2,dplyr
Suggests:knitr,rmarkdown,testthat
Published:2025-06-11
DOI:10.32614/CRAN.package.wideRhino
Author:Raeesa GaneyORCID iD [aut, cre]
Maintainer:Raeesa Ganey <Raeesa.ganey at wits.ac.za>
License:MIT + fileLICENSE
NeedsCompilation:no
Materials:README,NEWS
CRAN checks:wideRhino results

Documentation:

Reference manual:wideRhino.html ,wideRhino.pdf

Downloads:

Package source: wideRhino_1.0.2.tar.gz
Windows binaries: r-devel:wideRhino_1.0.2.zip, r-release:wideRhino_1.0.2.zip, r-oldrel:wideRhino_1.0.2.zip
macOS binaries: r-release (arm64):wideRhino_1.0.2.tgz, r-oldrel (arm64):wideRhino_1.0.2.tgz, r-release (x86_64):wideRhino_1.0.2.tgz, r-oldrel (x86_64):wideRhino_1.0.2.tgz

Linking:

Please use the canonical formhttps://CRAN.R-project.org/package=wideRhinoto link to this page.


[8]ページ先頭

©2009-2025 Movatter.jp