Movatterモバイル変換


[0]ホーム

URL:


PAmeasures: Prediction and Accuracy Measures for Nonlinear Models and forRight-Censored Time-to-Event Data

We propose a pair of summary measures for the predictive power of a prediction function based on a regression model. The regression model can be linear or nonlinear, parametric, semi-parametric, or nonparametric, and correctly specified or mis-specified. The first measure, R-squared, is an extension of the classical R-squared statistic for a linear model, quantifying the prediction function's ability to capture the variability of the response. The second measure, L-squared, quantifies the prediction function's bias for predicting the mean regression function. When used together, they give a complete summary of the predictive power of a prediction function. Please refer to Gang Li and Xiaoyan Wang (2016) <doi:10.48550/arXiv.1611.03063> for more details.

Version:0.1.0
Depends:R (≥ 3.1)
Imports:survival, stats
Suggests:testthat
Published:2018-01-22
DOI:10.32614/CRAN.package.PAmeasures
Author:Xiaoyan Wang, Gang Li
Maintainer:Xiaoyan Wang <xywang at ucla.edu>
License:GPL-3
NeedsCompilation:no
CRAN checks:PAmeasures results

Documentation:

Reference manual:PAmeasures.html ,PAmeasures.pdf

Downloads:

Package source: PAmeasures_0.1.0.tar.gz
Windows binaries: r-devel:PAmeasures_0.1.0.zip, r-release:PAmeasures_0.1.0.zip, r-oldrel:PAmeasures_0.1.0.zip
macOS binaries: r-release (arm64):PAmeasures_0.1.0.tgz, r-oldrel (arm64):PAmeasures_0.1.0.tgz, r-release (x86_64):PAmeasures_0.1.0.tgz, r-oldrel (x86_64):PAmeasures_0.1.0.tgz

Linking:

Please use the canonical formhttps://CRAN.R-project.org/package=PAmeasuresto link to this page.


[8]ページ先頭

©2009-2025 Movatter.jp