Movatterモバイル変換


[0]ホーム

URL:


lookout: Leave One Out Kernel Density Estimates for Outlier Detection

Outlier detection using leave-one-out kernel density estimates and extreme value theory. The bandwidth for kernel density estimates is computed using persistent homology, a technique in topological data analysis. Using peak-over-threshold method, a generalized Pareto distribution is fitted to the log of leave-one-out kde values to identify outliers.

Version:0.1.4
Imports:TDAstats,evd,RANN,ggplot2,tidyr
Suggests:knitr,rmarkdown
Published:2022-10-14
DOI:10.32614/CRAN.package.lookout
Author:Sevvandi KandanaarachchiORCID iD [aut, cre], Rob HyndmanORCID iD [aut], Chris Fraley [ctb]
Maintainer:Sevvandi Kandanaarachchi <sevvandik at gmail.com>
License:GPL-3
URL:https://sevvandi.github.io/lookout/
NeedsCompilation:no
Materials:README
In views:AnomalyDetection
CRAN checks:lookout results

Documentation:

Reference manual:lookout.html ,lookout.pdf

Downloads:

Package source: lookout_0.1.4.tar.gz
Windows binaries: r-devel:lookout_0.1.4.zip, r-release:lookout_0.1.4.zip, r-oldrel:lookout_0.1.4.zip
macOS binaries: r-release (arm64):lookout_0.1.4.tgz, r-oldrel (arm64):lookout_0.1.4.tgz, r-release (x86_64):lookout_0.1.4.tgz, r-oldrel (x86_64):lookout_0.1.4.tgz
Old sources: lookout archive

Reverse dependencies:

Reverse imports:oddnet

Linking:

Please use the canonical formhttps://CRAN.R-project.org/package=lookoutto link to this page.


[8]ページ先頭

©2009-2025 Movatter.jp