Movatterモバイル変換


[0]ホーム

URL:


hdme

CRAN_Status_BadgecodecovDOIR-CMD-check

The goal of hdme is to provide penalized regression methods forHigh-Dimensional Measurement Error problems (errors-in-variables).

Installation

Installhdme from CRAN using.

install.packages("hdme")

You can install the latest development version from github with:

# install.packages("devtools")devtools::install_github("osorensen/hdme",build_vignettes =TRUE)

Dependency on Rglpk

hdme uses theRglpk package, whichrequires the GLPK library package to be installed. On some platformsthis requires a manual installation.

On Debian/Ubuntu, you might use:

sudo apt-get install libglpk-dev

On macOS, you might use:

brew install glpk

Methods

hdme provides implementations of the following algorithms:

The methods implemented in the package include

Contributions

Contributions tohdme are very welcome. If you have aquestion or suspect you have found a bug, pleaseopen an Issue. Codecontribution by pull requests are also appreciated.

Citation

If using hdme in a scientific publication, please cite the followingpaper:

citation("hdme")#>#> To cite package 'hdme' in publications use:#>#>   Sorensen, (2019). hdme: High-Dimensional Regression with Measurement#>   Error. Journal of Open Source Software, 4(37), 1404,#>   https://doi.org/10.21105/joss.01404#>#> A BibTeX entry for LaTeX users is#>#>   @Article{,#>     title = {hdme: High-Dimensional Regression with Measurement Error},#>     journal = {Journal of Open Source Software},#>     volume = {4},#>     number = {37},#>     pages = {1404},#>     year = {2019},#>     doi = {10.21105/joss.01404},#>     author = {Oystein Sorensen},#>   }

References

James, Gareth M., and Peter Radchenko. 2009. “A Generalized DantzigSelector with Shrinkage Tuning.”Biometrika 96 (2): 323–37.
Loh, Po-Ling, and Martin J. Wainwright. 2012. “High-DimensionalRegression with Noisy and Missing Data: Provable Guarantees withNonconvexity.”Ann. Statist. 40 (3): 1637–64.
Rosenbaum, Mathieu, and Alexandre B. Tsybakov. 2010. “Sparse RecoveryUnder Matrix Uncertainty.”Ann. Statist. 38 (5): 2620–51.
Sorensen, Oystein, Arnoldo Frigessi, and Magne Thoresen. 2015.“Measurement Error in Lasso: Impact and Likelihood Bias Correction.”Statistica Sinica 25 (2): 809–29.
Sorensen, Oystein, Kristoffer Herland Hellton, Arnoldo Frigessi, andMagne Thoresen. 2018. “Covariate Selection in High-DimensionalGeneralized Linear Models with Measurement Error.”Journal ofComputational and Graphical Statistics 27 (4): 739–49.https://doi.org/10.1080/10618600.2018.1425626.

[8]ページ先頭

©2009-2025 Movatter.jp