Movatterモバイル変換


[0]ホーム

URL:


agfh: Agnostic Fay-Herriot Model for Small Area Statistics

Implements the Agnostic Fay-Herriot model, an extension of the traditional small area model. In place of normal sampling errors, the sampling error distribution is estimated with a Gaussian process to accommodate a broader class of distributions. This flexibility is most useful in the presence of bounded, multi-modal, or heavily skewed sampling errors.

Version:0.2.1
Imports:ggplot2,goftest,ks,mvtnorm, stats
Suggests:knitr,rmarkdown,testthat (≥ 3.0.0)
Published:2023-06-21
DOI:10.32614/CRAN.package.agfh
Author:Marten Thompson [aut, cre, cph], Snigdhansu Chatterjee [ctb, cph]
Maintainer:Marten Thompson <thom7058 at umn.edu>
License:GPL (≥ 3)
NeedsCompilation:no
Materials:README,NEWS
CRAN checks:agfh results

Documentation:

Reference manual:agfh.html ,agfh.pdf
Vignettes:agfh Vignette (source,R code)

Downloads:

Package source: agfh_0.2.1.tar.gz
Windows binaries: r-devel:agfh_0.2.1.zip, r-release:agfh_0.2.1.zip, r-oldrel:agfh_0.2.1.zip
macOS binaries: r-release (arm64):agfh_0.2.1.tgz, r-oldrel (arm64):agfh_0.2.1.tgz, r-release (x86_64):agfh_0.2.1.tgz, r-oldrel (x86_64):agfh_0.2.1.tgz

Linking:

Please use the canonical formhttps://CRAN.R-project.org/package=agfhto link to this page.


[8]ページ先頭

©2009-2025 Movatter.jp