
The goal ofwhippr is to provide a set of tools formanipulating gas exchange data from cardiopulmonary exercisetesting.
whippr?The name of the package is in honor ofProf. Brian JWhipp and his invaluable contribution to the field of exercisephysiology.
You can install the development version ofwhippr fromGithub with:
# install.packages("remotes")remotes::install_github("fmmattioni/whippr")library(whippr)## example file that comes with the package for demonstration purposespath_example<-system.file("example_cosmed.xlsx",package ="whippr")df<-read_data(path = path_example,metabolic_cart ="cosmed")df#> # Metabolic cart: COSMED#> # Data status: raw data#> # Time column: t#> # A tibble: 754 × 119#> t Rf VT VE VO2 VCO2 O2exp CO2exp `VE/VO2` `VE/VCO2` `VO2/Kg`#> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>#> 1 2 8.08 1.19 9.60 380. 301. 185. 52.9 25.3 31.9 4.58#> 2 4 23.2 0.915 21.2 864. 665. 141. 40.8 24.5 31.9 10.4#> 3 8 15.6 2.11 32.9 1317. 1075. 325. 97.2 25.0 30.6 15.9#> 4 11 20.6 1.18 24.4 894. 714. 188. 49.2 27.3 34.1 10.8#> 5 14 23.3 0.947 22.1 822. 647. 150. 39.4 26.9 34.1 9.90#> 6 18 14.7 2.28 33.6 1347. 1126. 351. 108. 24.9 29.8 16.2#> 7 23 11.2 2.32 26.1 980. 848. 364. 107. 26.6 30.7 11.8#> 8 28 13.2 2.18 28.8 1147. 981. 336. 105. 25.2 29.4 13.8#> 9 31 17.7 1.51 26.7 1048. 860. 234. 68.8 25.5 31.0 12.6#> 10 35 14.2 1.68 23.8 973. 794. 257. 79.3 24.5 30.0 11.7#> # ℹ 744 more rows#> # ℹ 108 more variables: R <dbl>, FeO2 <dbl>, FeCO2 <dbl>, HR <dbl>,#> # `VO2/HR` <dbl>, Load1 <dbl>, Load2 <dbl>, Load3 <dbl>, Phase <dbl>,#> # Marker <lgl>, FetO2 <dbl>, FetCO2 <dbl>, FiO2 <dbl>, FiCO2 <dbl>, Ti <dbl>,#> # Te <dbl>, Ttot <dbl>, `Ti/Ttot` <dbl>, IV <dbl>, PetO2 <dbl>, PetCO2 <dbl>,#> # `P(a-et)CO2` <dbl>, SpO2 <dbl>, `VD(phys)` <dbl>, `VD/VT` <dbl>,#> # `Env. Temp.` <dbl>, `Analyz. Temp.` <dbl>, `Analyz. Press.` <dbl>, …df%>%interpolate()#> # Metabolic cart: COSMED#> # Data status: interpolated data#> # Time column: t#> # A tibble: 2,159 × 114#> t Rf VT VE VO2 VCO2 O2exp CO2exp `VE/VO2` `VE/VCO2` `VO2/Kg`#> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>#> 1 2 8.08 1.19 9.60 380. 301. 185. 52.9 25.3 31.9 4.58#> 2 3 15.6 1.05 15.4 622. 483. 163. 46.8 24.9 31.9 7.50#> 3 4 23.2 0.915 21.2 864. 665. 141. 40.8 24.5 31.9 10.4#> 4 5 21.3 1.21 24.1 978. 767. 187. 54.9 24.6 31.6 11.8#> 5 6 19.4 1.51 27.1 1091. 870. 233. 69.0 24.8 31.3 13.1#> 6 7 17.5 1.81 30.0 1204. 973. 279. 83.1 24.9 30.9 14.5#> 7 8 15.6 2.11 32.9 1317. 1075. 325. 97.2 25.0 30.6 15.9#> 8 9 17.3 1.80 30.1 1176. 955. 279. 81.2 25.7 31.8 14.2#> 9 10 19.0 1.49 27.2 1035. 834. 233. 65.2 26.5 33.0 12.5#> 10 11 20.6 1.18 24.4 894. 714. 188. 49.2 27.3 34.1 10.8#> # ℹ 2,149 more rows#> # ℹ 103 more variables: R <dbl>, FeO2 <dbl>, FeCO2 <dbl>, HR <dbl>,#> # `VO2/HR` <dbl>, Load1 <dbl>, Load2 <dbl>, Load3 <dbl>, Phase <dbl>,#> # FetO2 <dbl>, FetCO2 <dbl>, FiO2 <dbl>, FiCO2 <dbl>, Ti <dbl>, Te <dbl>,#> # Ttot <dbl>, `Ti/Ttot` <dbl>, IV <dbl>, PetO2 <dbl>, PetCO2 <dbl>,#> # `P(a-et)CO2` <dbl>, SpO2 <dbl>, `VD(phys)` <dbl>, `VD/VT` <dbl>,#> # `Env. Temp.` <dbl>, `Analyz. Temp.` <dbl>, `Analyz. Press.` <dbl>, …## example of performing 30-s bin-averagesdf%>%interpolate()%>%perform_average(type ="bin",bins =30)#> # Metabolic cart: COSMED#> # Data status: averaged data - 30-s bins#> # Time column: t#> # A tibble: 72 × 114#> t Rf VT VE VO2 VCO2 O2exp CO2exp `VE/VO2` `VE/VCO2` `VO2/Kg`#> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>#> 1 30 16.3 1.75 26.5 1032. 852. 272. 80.5 25.7 31.4 12.4#> 2 60 19.0 1.39 25.1 1046. 822. 211. 65.0 24.1 30.7 12.6#> 3 90 16.6 1.76 28.1 1164. 949. 268. 85.0 24.3 29.7 14.0#> 4 120 17.8 1.93 25.7 1054. 853. 296. 92.5 24.6 30.5 12.7#> 5 150 15.4 1.68 24.6 993. 823. 257. 80.4 24.8 29.9 12.0#> 6 180 18.1 1.38 25.1 1058. 833. 209. 65.4 24.0 30.4 12.7#> 7 210 22.3 1.37 29.1 1122. 935. 213. 63.4 26.0 31.3 13.5#> 8 240 16.6 1.91 24.9 966. 825. 301. 89.5 25.8 30.2 11.6#> 9 270 16.8 1.64 26.2 1044. 896. 252. 79.7 25.2 29.4 12.6#> 10 300 14.5 2.09 27.2 1097. 945. 322. 103. 24.6 28.8 13.2#> # ℹ 62 more rows#> # ℹ 103 more variables: R <dbl>, FeO2 <dbl>, FeCO2 <dbl>, HR <dbl>,#> # `VO2/HR` <dbl>, Load1 <dbl>, Load2 <dbl>, Load3 <dbl>, Phase <dbl>,#> # FetO2 <dbl>, FetCO2 <dbl>, FiO2 <dbl>, FiCO2 <dbl>, Ti <dbl>, Te <dbl>,#> # Ttot <dbl>, `Ti/Ttot` <dbl>, IV <dbl>, PetO2 <dbl>, PetCO2 <dbl>,#> # `P(a-et)CO2` <dbl>, SpO2 <dbl>, `VD(phys)` <dbl>, `VD/VT` <dbl>,#> # `Env. Temp.` <dbl>, `Analyz. Temp.` <dbl>, `Analyz. Press.` <dbl>, …## example of performing 30-s rolling-averagesdf%>%interpolate()%>%perform_average(type ="rolling",rolling_window =30)#> # Metabolic cart: COSMED#> # Data status: averaged data - 30-s rolling average#> # Time column: t#> # A tibble: 2,130 × 114#> t Rf VT VE VO2 VCO2 O2exp CO2exp `VE/VO2` `VE/VCO2` `VO2/Kg`#> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>#> 1 16.5 16.4 1.75 26.5 1033. 852. 271. 80.1 25.7 31.3 12.4#> 2 17.5 16.6 1.76 27.0 1054. 870. 273. 80.7 25.7 31.3 12.7#> 3 18.5 16.7 1.78 27.3 1067. 882. 276. 81.6 25.7 31.3 12.9#> 4 19.5 16.4 1.80 27.4 1071. 887. 280. 82.8 25.7 31.2 12.9#> 5 20.5 16.2 1.82 27.4 1071. 888. 282. 83.6 25.7 31.1 12.9#> 6 21.5 16.0 1.82 27.3 1068. 885. 282. 83.8 25.7 31.1 12.9#> 7 22.5 16.0 1.81 27.1 1062. 880. 280. 83.4 25.7 31.1 12.8#> 8 23.5 16.0 1.78 26.9 1052. 871. 277. 82.4 25.6 31.0 12.7#> 9 24.5 16.1 1.77 26.7 1048. 867. 274. 81.8 25.5 31.0 12.6#> 10 25.5 16.1 1.76 26.6 1050. 868. 273. 81.9 25.4 30.8 12.6#> # ℹ 2,120 more rows#> # ℹ 103 more variables: R <dbl>, FeO2 <dbl>, FeCO2 <dbl>, HR <dbl>,#> # `VO2/HR` <dbl>, Load1 <dbl>, Load2 <dbl>, Load3 <dbl>, Phase <dbl>,#> # FetO2 <dbl>, FetCO2 <dbl>, FiO2 <dbl>, FiCO2 <dbl>, Ti <dbl>, Te <dbl>,#> # Ttot <dbl>, `Ti/Ttot` <dbl>, IV <dbl>, PetO2 <dbl>, PetCO2 <dbl>,#> # `P(a-et)CO2` <dbl>, SpO2 <dbl>, `VD(phys)` <dbl>, `VD/VT` <dbl>,#> # `Env. Temp.` <dbl>, `Analyz. Temp.` <dbl>, `Analyz. Press.` <dbl>, …results_kinetics<-vo2_kinetics(.data = df,intensity_domain ="moderate",vo2_column ="VO2",protocol_n_transitions =3,protocol_baseline_length =360,protocol_transition_length =360,cleaning_level =0.95,cleaning_baseline_fit =c("linear","exponential","exponential"),fit_level =0.95,fit_bin_average =5,fit_phase_1_length =20,fit_baseline_length =120,fit_transition_length =240,verbose =TRUE)#> ────────────────────────── * V̇O₂ kinetics analysis * ─────────────────────────#> ✔ Detecting outliers#> • 14 outliers found in transition 1#> • 15 outliers found in transition 2#> • 13 outliers found in transition 3#> ✔ Processing data...#> ✔ └─ Removing outliers#> ✔ └─ Interpolating each transition#> ✔ └─ Ensemble-averaging transitions#> ✔ └─ Performing 5-s bin averages#> ✔ Fitting data...#> ✔ └─ Fitting baseline#> ✔ └─ Fitting transition#> ✔ └─ Calculating residuals#> ✔ └─ Preparing plots#> ────────────────────────────────── * DONE * ──────────────────────────────────df_incremental<-read_data(path =system.file("ramp_cosmed.xlsx",package ="whippr"),metabolic_cart ="cosmed")vo2_max(.data = df_incremental,## data from `read_data()`vo2_column ="VO2",vo2_relative_column ="VO2/Kg",heart_rate_column ="HR",rer_column ="R",detect_outliers =TRUE,average_method ="bin",average_length =30,plot =TRUE,verbose =TRUE,## arguments for `incremental_normalize()`incremental_type ="ramp",has_baseline =TRUE,baseline_length =240,## 4-min baselinework_rate_magic =TRUE,## produce a work rate columnbaseline_intensity =20,## baseline was performed at 20 Wramp_increase =25,## 25 W/min ramp## arguments for `detect_outliers()`test_type ="incremental",cleaning_level =0.95,method_incremental ="linear")#> ──────────────────────────── * V̇O₂ max analysis * ────────────────────────────#> ✔ Normalizing incremental data...#> ✔ Detecting outliers#> • 2 outlier(s) found in baseline#> • 15 outlier(s) found in ramp#> ✔ Filtering out outliers...#> ✔ Interpolating from breath-by-breath into second-by-second...#> ✔ Performing averages...#> # A tibble: 1 × 6#> VO2max_absolute VO2max_relative POpeak HRmax RERmax plot#> <dbl> <dbl> <int> <dbl> <dbl> <list>#> 1 3514. 45.8 303 193 1.13 <gg>Would you like to perform VO2 kinetics analyses but don’tknow R? No problem! You can use our online app:VO2 Kinetics App
Please note that this project is released with aContributorCode of Conduct. By participating in this project you agree to abideby its terms.
Icons made bymonkikfromwww.flaticon.com