Movatterモバイル変換


[0]ホーム

URL:


spFSR: Feature Selection and Ranking via Simultaneous PerturbationStochastic Approximation

An implementation of feature selection, weighting and ranking via simultaneous perturbation stochastic approximation (SPSA). The SPSA-FSR algorithm searches for a locally optimal set of features that yield the best predictive performance using some error measures such as mean squared error (for regression problems) and accuracy rate (for classification problems).

Version:2.0.4
Depends:mlr3 (≥ 0.14.0),future (≥ 1.28.0),tictoc (≥ 1.0)
Imports:mlr3pipelines (≥ 0.4.2),mlr3learners (≥ 0.5.4),ranger (≥0.14.1), parallel (≥ 3.4.2),ggplot2 (≥ 2.2.1),lgr (≥0.4.4)
Suggests:caret (≥ 6.0),MASS (≥ 7.3)
Published:2023-03-17
DOI:10.32614/CRAN.package.spFSR
Author:David Akman [aut, cre], Babak Abbasi [aut, ctb], Yong Kai Wong [aut, ctb], Guo Feng Anders Yeo [aut, ctb], Zeren D. Yenice [ctb]
Maintainer:David Akman <david.v.akman at gmail.com>
BugReports:https://github.com/yongkai17/spFSR/issues
License:GPL-3
URL:https://www.featureranking.com/
NeedsCompilation:no
CRAN checks:spFSR results

Documentation:

Reference manual:spFSR.html ,spFSR.pdf

Downloads:

Package source: spFSR_2.0.4.tar.gz
Windows binaries: r-devel:spFSR_2.0.4.zip, r-release:spFSR_2.0.4.zip, r-oldrel:spFSR_2.0.4.zip
macOS binaries: r-release (arm64):spFSR_2.0.4.tgz, r-oldrel (arm64):spFSR_2.0.4.tgz, r-release (x86_64):spFSR_2.0.4.tgz, r-oldrel (x86_64):spFSR_2.0.4.tgz
Old sources: spFSR archive

Linking:

Please use the canonical formhttps://CRAN.R-project.org/package=spFSRto link to this page.


[8]ページ先頭

©2009-2025 Movatter.jp