Movatterモバイル変換


[0]ホーム

URL:


misspi: Missing Value Imputation in Parallel

A framework that boosts the imputation of 'missForest' by Stekhoven, D.J. and Bühlmann, P. (2012) <doi:10.1093/bioinformatics/btr597> by harnessing parallel processing and through the fast Gradient Boosted Decision Trees (GBDT) implementation 'LightGBM' by Ke, Guolin et al.(2017) <https://papers.nips.cc/paper/6907-lightgbm-a-highly-efficient-gradient-boosting-decision>. 'misspi' has the following main advantages: 1. Allows embrassingly parallel imputation on large scale data. 2. Accepts a variety of machine learning models as methods with friendly user portal. 3. Supports multiple initializations methods. 4. Supports early stopping that prohibits unnecessary iterations.

Version:0.1.0
Depends:R (≥ 3.5.0)
Imports:lightgbm,doParallel,doSNOW,foreach,ggplot2,glmnet,SIS,plotly
Suggests:e1071,neuralnet
Published:2023-10-17
DOI:10.32614/CRAN.package.misspi
Author:Zhongli Jiang [aut, cre]
Maintainer:Zhongli Jiang <jiang548 at purdue.edu>
License:GPL-2
NeedsCompilation:no
CRAN checks:misspi results

Documentation:

Reference manual:misspi.html ,misspi.pdf

Downloads:

Package source: misspi_0.1.0.tar.gz
Windows binaries: r-devel:misspi_0.1.0.zip, r-release:misspi_0.1.0.zip, r-oldrel:misspi_0.1.0.zip
macOS binaries: r-release (arm64):misspi_0.1.0.tgz, r-oldrel (arm64):misspi_0.1.0.tgz, r-release (x86_64):misspi_0.1.0.tgz, r-oldrel (x86_64):misspi_0.1.0.tgz

Linking:

Please use the canonical formhttps://CRAN.R-project.org/package=misspito link to this page.


[8]ページ先頭

©2009-2025 Movatter.jp