Movatterモバイル変換


[0]ホーム

URL:


SAMBA: Selection and Misclassification Bias Adjustment for LogisticRegression Models

Health research using data from electronic health records (EHR) has gained popularity, but misclassification of EHR-derived disease status and lack of representativeness of the study sample can result in substantial bias in effect estimates and can impact power and type I error for association tests. Here, the assumed target of inference is the relationship between binary disease status and predictors modeled using a logistic regression model. 'SAMBA' implements several methods for obtaining bias-corrected point estimates along with valid standard errors as proposed in Beesley and Mukherjee (2020) <doi:10.1101/2019.12.26.19015859>, currently under review.

Version:0.9.0
Imports:stats,optimx,survey
Suggests:knitr,rmarkdown,ggplot2,scales,MASS
Published:2020-02-20
DOI:10.32614/CRAN.package.SAMBA
Author:Alexander Rix [cre], Lauren Beesley [aut]
Maintainer:Alexander Rix <alexrix at umich.edu>
License:GPL-3
NeedsCompilation:no
Materials:README,NEWS
CRAN checks:SAMBA results

Documentation:

Reference manual:SAMBA.html ,SAMBA.pdf
Vignettes:UsingSAMBA (source,R code)

Downloads:

Package source: SAMBA_0.9.0.tar.gz
Windows binaries: r-devel:SAMBA_0.9.0.zip, r-release:SAMBA_0.9.0.zip, r-oldrel:SAMBA_0.9.0.zip
macOS binaries: r-release (arm64):SAMBA_0.9.0.tgz, r-oldrel (arm64):SAMBA_0.9.0.tgz, r-release (x86_64):SAMBA_0.9.0.tgz, r-oldrel (x86_64):SAMBA_0.9.0.tgz

Reverse dependencies:

Reverse imports:COMBO

Linking:

Please use the canonical formhttps://CRAN.R-project.org/package=SAMBAto link to this page.


[8]ページ先頭

©2009-2025 Movatter.jp