Movatterモバイル変換


[0]ホーム

URL:


BTdecayLasso: Bradley-Terry Model with Exponential Time Decayed Log-Likelihoodand Adaptive Lasso

We utilize the Bradley-Terry Model to estimate the abilities of teams using paired comparison data. For dynamic approximation of current rankings, we employ the Exponential Decayed Log-likelihood function, and we also apply the Lasso penalty for variance reduction and grouping. The main algorithm applies the Augmented Lagrangian Method described by Masarotto and Varin (2012) <doi:10.1214/12-AOAS581>.

Version:0.1.1
Imports:optimx,ggplot2, stats
Published:2023-12-07
DOI:10.32614/CRAN.package.BTdecayLasso
Author:Yunpeng Zhou [aut, cre], Jinfeng Xu [aut]
Maintainer:Yunpeng Zhou <u3514104 at connect.hku.hk>
License:GPL-2 |GPL-3 [expanded from: GPL (≥ 2)]
NeedsCompilation:no
Materials:README,NEWS
CRAN checks:BTdecayLasso results

Documentation:

Reference manual:BTdecayLasso.html ,BTdecayLasso.pdf

Downloads:

Package source: BTdecayLasso_0.1.1.tar.gz
Windows binaries: r-devel:BTdecayLasso_0.1.1.zip, r-release:BTdecayLasso_0.1.1.zip, r-oldrel:BTdecayLasso_0.1.1.zip
macOS binaries: r-release (arm64):BTdecayLasso_0.1.1.tgz, r-oldrel (arm64):BTdecayLasso_0.1.1.tgz, r-release (x86_64):BTdecayLasso_0.1.1.tgz, r-oldrel (x86_64):BTdecayLasso_0.1.1.tgz
Old sources: BTdecayLasso archive

Linking:

Please use the canonical formhttps://CRAN.R-project.org/package=BTdecayLassoto link to this page.


[8]ページ先頭

©2009-2025 Movatter.jp