Movatterモバイル変換


[0]ホーム

URL:


kko: Kernel Knockoffs Selection for Nonparametric Additive Models

A variable selection procedure, dubbed KKO, for nonparametric additive model with finite-sample false discovery rate control guarantee. The method integrates three key components: knockoffs, subsampling for stability, and random feature mapping for nonparametric function approximation. For more information, see the accompanying paper: Dai, X., Lyu, X., & Li, L. (2021). “Kernel Knockoffs Selection for Nonparametric Additive Models”. arXiv preprint <doi:10.48550/arXiv.2105.11659>.

Version:1.0.1
Depends:R (≥ 3.6.3)
Imports:grpreg,knockoff,doParallel, parallel,foreach,ExtDist
Suggests:knitr,rmarkdown,ggplot2
Published:2022-02-01
DOI:10.32614/CRAN.package.kko
Author:Xiaowu Dai [aut], Xiang Lyu [aut, cre], Lexin Li [aut]
Maintainer:Xiang Lyu <xianglyu at berkeley.edu>
License:GPL-2 |GPL-3 [expanded from: GPL (≥ 2)]
NeedsCompilation:no
CRAN checks:kko results

Documentation:

Reference manual:kko.html ,kko.pdf
Vignettes:Vignette of R package kko (source,R code)

Downloads:

Package source: kko_1.0.1.tar.gz
Windows binaries: r-devel:kko_1.0.1.zip, r-release:kko_1.0.1.zip, r-oldrel:kko_1.0.1.zip
macOS binaries: r-release (arm64):kko_1.0.1.tgz, r-oldrel (arm64):kko_1.0.1.tgz, r-release (x86_64):kko_1.0.1.tgz, r-oldrel (x86_64):kko_1.0.1.tgz

Linking:

Please use the canonical formhttps://CRAN.R-project.org/package=kkoto link to this page.


[8]ページ先頭

©2009-2025 Movatter.jp