Movatterモバイル変換


[0]ホーム

URL:


traineR: Predictive (Classification and Regression) Models Homologator

Methods to unify the different ways of creating predictive models and their different predictive formats for classification and regression. It includes methods such as K-Nearest Neighbors Schliep, K. P. (2004) <doi:10.5282/ubm/epub.1769>, Decision Trees Leo Breiman, Jerome H. Friedman, Richard A. Olshen, Charles J. Stone (2017) <doi:10.1201/9781315139470>, ADA Boosting Esteban Alfaro, Matias Gamez, Noelia García (2013) <doi:10.18637/jss.v054.i02>, Extreme Gradient Boosting Chen & Guestrin (2016) <doi:10.1145/2939672.2939785>, Random Forest Breiman (2001) <doi:10.1023/A:1010933404324>, Neural Networks Venables, W. N., & Ripley, B. D. (2002) <ISBN:0-387-95457-0>, Support Vector Machines Bennett, K. P. & Campbell, C. (2000) <doi:10.1145/380995.380999>, Bayesian Methods Gelman, A., Carlin, J. B., Stern, H. S., & Rubin, D. B. (1995) <doi:10.1201/9780429258411>, Linear Discriminant Analysis Venables, W. N., & Ripley, B. D. (2002) <ISBN:0-387-95457-0>, Quadratic Discriminant Analysis Venables, W. N., & Ripley, B. D. (2002) <ISBN:0-387-95457-0>, Logistic Regression Dobson, A. J., & Barnett, A. G. (2018) <doi:10.1201/9781315182780> and Penalized Logistic Regression Friedman, J. H., Hastie, T., & Tibshirani, R. (2010) <doi:10.18637/jss.v033.i01>.

Version:2.2.2
Depends:R (≥ 4.1)
Imports:neuralnet (≥ 1.44.2),rpart (≥ 4.1-13),xgboost (≥0.81.0.1),randomForest (≥ 4.6-14),e1071 (≥ 1.7-0.1),kknn (≥ 1.4.1),dplyr (≥ 0.8.0.1),MASS (≥ 7.3-53),ada (≥2.0-5),nnet (≥ 7.3-12),stringr (≥ 1.4.0),adabag,glmnet,ROCR,gbm,ggplot2
Published:2025-05-23
DOI:10.32614/CRAN.package.traineR
Author:Oldemar Rodriguez R. [aut, cre], Andres Navarro D. [aut], Ariel Arroyo S. [aut], Diego Jimenez A. [aut]
Maintainer:Oldemar Rodriguez R. <oldemar.rodriguez at ucr.ac.cr>
BugReports:https://github.com/PROMiDAT/traineR/issues
License:GPL-2 |GPL-3 [expanded from: GPL (≥ 2)]
URL:https://promidat.website/
NeedsCompilation:no
CRAN checks:traineR results[issues need fixing before 2025-12-22]

Documentation:

Reference manual:traineR.html ,traineR.pdf

Downloads:

Package source: traineR_2.2.2.tar.gz
Windows binaries: r-devel:traineR_2.2.2.zip, r-release:traineR_2.2.2.zip, r-oldrel:traineR_2.2.2.zip
macOS binaries: r-release (arm64):traineR_2.2.2.tgz, r-oldrel (arm64):traineR_2.2.2.tgz, r-release (x86_64):traineR_2.2.2.tgz, r-oldrel (x86_64):traineR_2.2.2.tgz
Old sources: traineR archive

Reverse dependencies:

Reverse imports:predictoR,regressoR

Linking:

Please use the canonical formhttps://CRAN.R-project.org/package=traineRto link to this page.


[8]ページ先頭

©2009-2025 Movatter.jp