Movatterモバイル変換


[0]ホーム

URL:


4. Method

General setup

Let us set up the notations first. Suppose a there exists a partitionof a region\(\mathrm{D} \in\mathcal{R}^2\) (e.g., a city). This partition is denoted by\(A_i\),\(i= 1, \ldots, n\). Moreover, there exists another partition of thesame city, denoted\(B_j\), where\(j = 1, \ldots, m\). These partitions can beseen as two different administrative divisions within the same city. Itis common for different government agencies to release data fordifferent divisions of a same city, country, or state.

Model-based approach

Consequently,

\[\mathrm{E}[Y(A_i)] = \frac{1}{\lvert A_i\rvert} \int_{A_i}\mathrm{E}[Y(\mathbf{s})] \, \mathrm{d} \mathbf{s} = \frac{1}{\lvert A_i\rvert}\int_{A_i} \mu \, \mathrm{d} \mathbf{s} = \mu\]

and

\[\begin{align*}\mathrm{Cov}[Y(A_i), Y(A_j)] & = \frac{1}{\lvert A_i \rvert \lvertA_j \rvert}\int_{A_i \times A_j} \mathrm{Cov}[Y(\mathbf{s}, Y(\mathbf{s}')] \,\mathrm{d}\mathbf{s} \, \mathrm{d} \mathbf{s'} \\& = \frac{1}{\lvert A_i \rvert \lvert A_j \rvert} \int_{A_i \timesA_j} \mathrm{C}(\lVert \mathbf{s} - \mathbf{s}' \rVert ; \boldsymbol{\theta}) \,\mathrm{d}\mathbf{s} \, \mathrm{d} \mathbf{s'},\end{align*}\]

where\(\lVert \mathbf{s} - \mathbf{s}'\rVert\) is the Euclidean distance between the coordinates\(\mathbf{s}\) and\(\mathbf{s}'\), and\(\mathrm{C}( \lVert\mathbf{s} - \mathbf{s}' \rVert ; \boldsymbol{\theta})\) isan isotropic covariance function depending on the parameter\(\boldsymbol{\theta}\).

Assume we observe a random variable\(Y(\cdot)\) at each region\(A_i\) and we are interested inpredict/estimate this variable in each of the regions\(B_j\). Now suppose the random variable\(Y(\cdot)\) varies continuously over\(\mathrm{D}\) and is defined asfollows\[Y(\mathbf{s}) = \mu + S(\mathbf{s})+ \varepsilon(\mathbf{s}), \, \mathbf{s} \in\mathrm{D} \subset \mathcal{R}^2.\]

where\[S(\cdot) \sim \mathrm{GP}(0, \sigma^2 \rho(\cdot; \, \phi, \kappa)) \;\text{ and } \;\varepsilon(\cdot) \overset{\mathrm{i.i.d.}}{\sim} \mathrm{N}(0,\sigma^2 \rho(\cdot;\, \phi, \kappa)),\] where\(S\) and\(\varepsilon\) are independent. For now,let’s make the unrealistic assumption that all those parameters areknown. Then, our assumption is that the observed data is as follows

\[\begin{align*}Y(A_i) & = \frac{1}{\lvert A_i \rvert} \int_{A_i} Y(\mathbf{s}) \,\mathrm{d}\mathbf{s} \\& = \frac{1}{\lvert A_i \rvert} \int_{A_i} [\mu + S(\mathbf{s}) +\varepsilon(\mathbf{s})] \, \mathrm{d} \mathbf{s} \\& = \mu + \frac{1}{\lvert A_i \rvert} \int_{A_i} S(\mathbf{s})\mathrm{d}\mathbf{s} + \frac{1}{\lvert A_i \rvert} \int_{A_i}\varepsilon(\mathbf{s})\mathrm{d} \mathbf{s},\end{align*}\]

where\(\lvert \cdot \rvert\)returns the area of a polygon. Furthermore, it can be shown that (usingFubini’s Theorem and some algebraic manipulation)\[\mathrm{Cov}(Y(A_i), Y(A_j)) = \frac{\sigma^2}{\lvert A_i \rvert \lvertA_j \rvert}\int_{A_i \times A_j} \rho( \lVert \mathbf{s} - \mathbf{s}' \rVert;\, \phi,\kappa ) \, \mathrm{d} \mathbf{s} \, \mathrm{d} \mathbf{s}' +\mathbf{I}(i = j)\frac{\tau}{\lvert A_i \rvert},\] where\(\rho(\cdot ; \, \phi,\kappa)\) is a positive definite correlation function. Now, let\(\mathrm{R}_{\kappa}(\phi)\) be acorrelation matrix such that\[\mathrm{R}_{\kappa}(\phi)_{ij} = \frac{1}{\lvert A_i \rvert \lvert A_j\rvert}\int_{A_i \times A_j} \rho( \lVert \mathbf{s} - \mathbf{s}' \rVert;\, \phi,\kappa ) \, \mathrm{d} \mathbf{s} \, \mathrm{d} \mathbf{s}',\] thus,\[Y(A_1, \cdots, A_n) \sim \mathrm{N}( \mu \mathbf{1}_n, \sigma^2\mathrm{R}_{\kappa}(\phi) + \tau \mathrm{diag}(\lvert A_1 \rvert^{-1},\ldots,\lvert A_1 \rvert^{-1})).\] Then, if we assume\((Y^{\top}(A_1,\cdots, A_n), Y^{\top}(B_1, \cdots,A_m)^{\top})\) to be jointly normal, we use can the conditionalmean of\(Y^{\top}(B_1, \cdots,A_m)^{\top}\) given\(Y^{\top}(A_1,\cdots, A_n)\) to estimate the observed random variable in thepartition\(B_1, \ldots, B_m\).


Now, suppose the parameters\(\boldsymbol{\theta} = (\mu, \sigma^2, \phi,\tau)\) are unknown. The Likelihood of\(Y(A_1, \ldots, A_n)\) can still becomputed.

In particular, if we use the parametrization\(\alpha = \tau / \sigma^2\), we have closedform for the Maximum Likelihood estimators both for\(\mu\) and\(\sigma^2\). Thus, we can optimize theprofile likelihood for\(\phi\) and\(\alpha\) numerically. Then, we resorton conditional Normal properties again to compute the predictions in anew different set of regions.

Areal Interpolation (AI)

Areal interpolation is a nonparametric approach that interpolates\(Y(A_i)\)’s to construct\(Y(B_j)\)’s. Define an\(m \times n\) matrix\(\mathbf{W} = \{ w_{ij} \}\), where\(w_{ij}\) is the weight associated with thepolygon\(A_i\) in constructing\(Y(B_j)\). The weights are\(w_{ij} = \lvert A_i \cap B_j \rvert / \lvert B_j\rvert\)(Goodchild and Lam 1980; Gotwayand Young 2002). The interpolation for\(\hat Y(B_1, \ldots, B_m)\) is constructedas\[\begin{equation} \label{eq:np-est} \hat{Y}(B_1, \ldots, B_m) = \mathbf{W} Y(A_1, \ldots, A_n).\end{equation}\] The expectation and variance of the predictorare, respectively,\[ \mathrm{E}[\hat{Y}(B_1, \ldots, B_m)] = \mathbf{W} \mathrm{E}[Y(A_1, \ldots, A_n)]\] and\[\begin{equation} \label{eq:np-matcov} \textrm{Var}[\hat{Y}(B_1, \ldots, B_m)] = \mathbf{W} \textrm{Var}[Y(A_1, \ldots, A_n)] \mathbf{W}^{\top}.\end{equation}\] In practice, the covariance matrix\(\textrm{Var}[Y(A_1, \ldots, A_n)]\) isunknown and, consequently needs to be estimated.

The variance each predictor\(\text{Var}[\hat Y(B_i)]\) is needed as anuncertainty measure. It relies on both the variances of\(Y(A_j)\)’s and their covariances:\[\begin{align} \label{eq:np-single-var} \textrm{Var}[\hat{Y}(B_i)] = \sum_{i = 1}^n w^2_{ij} \textrm{Var} \left [ Y(A_i) \right ] + 2\sum_{l \neq i} w_{ij} w_{il} \textrm{Cov} \left[ Y(A_i), Y(A_l) \right].\end{align}\] The variances are often observed in survey data,but the covariances are not. For practical purpose, we propose anapproximation for\(\textrm{Cov}[ Y(A_i),Y(A_l)]\) based on Moran’s I, a global spatial autocorrelation.Specifically, let\(\rho_I\) be theMoran’s I calculated with a weight matrix constructed with first-degreeneighbors. That is,\(\rho_I\) is theaverage of the pairwise correlation for all neighboring pairs. Forregions\(A_i\) and\(A_l\), if they are neighbors of each other,our approximation is\[\begin{align} \label{eq:cova} \textrm{Cov} \left[ Y(A_i), Y(A_l) \right] = \rho_I \sqrt{\text{Var}[Y(A_i)] \text{Var}[Y(A_l)]}.\end{align}\] The covariance between non-neighboring\(A_i\) and\(A_l\) is discarded. The final uncertaintyapproximation for\(\textrm{Var}[\hat{Y}(B_i)]\) will be anunderestimate. Alternatively, we can derive, at least, an upper boundfor the variance of the estimates by using a simple application from theCauchy–Schwartz inequality, in which case,\(\rho_I\) is replaced with~1.

Reference

Goodchild, Michael F, and Nina Siu-Ngan Lam. 1980.“ArealInterpolation:A Variant of the Traditional SpatialProblem.”Geo-Processing 1: 279–312.
Gotway, Carol A, and Linda J Young. 2002.“Combining IncompatibleSpatial Data.”Journal of the American StatisticalAssociation 97 (458): 632–48.

[8]ページ先頭

©2009-2025 Movatter.jp