Movatterモバイル変換


[0]ホーム

URL:


SBMSplitMerge: Inference for a Generalised SBM with a Split Merge Sampler

Inference in a Bayesian framework for a generalised stochastic block model. The generalised stochastic block model (SBM) can capture group structure in network data without requiring conjugate priors on the edge-states. Two sampling methods are provided to perform inference on edge parameters and block structure: a split-merge Markov chain Monte Carlo algorithm and a Dirichlet process sampler. Green, Richardson (2001) <doi:10.1111/1467-9469.00242>; Neal (2000) <doi:10.1080/10618600.2000.10474879>; Ludkin (2019) <doi:10.48550/arXiv.1909.09421>.

Version:1.1.1
Depends:R (≥ 3.1.0)
Imports:ggplot2,scales,reshape2
Suggests:knitr,rmarkdown
Published:2020-06-04
DOI:10.32614/CRAN.package.SBMSplitMerge
Author:Matthew Ludkin [aut, cre, cph]
Maintainer:Matthew Ludkin <m.ludkin1 at lancaster.ac.uk>
License:MIT + fileLICENSE
NeedsCompilation:no
Language:en-GB
Materials:README,NEWS
CRAN checks:SBMSplitMerge results

Documentation:

Reference manual:SBMSplitMerge.html ,SBMSplitMerge.pdf
Vignettes:Weibull-edges (source,R code)

Downloads:

Package source: SBMSplitMerge_1.1.1.tar.gz
Windows binaries: r-devel:SBMSplitMerge_1.1.1.zip, r-release:SBMSplitMerge_1.1.1.zip, r-oldrel:SBMSplitMerge_1.1.1.zip
macOS binaries: r-release (arm64):SBMSplitMerge_1.1.1.tgz, r-oldrel (arm64):SBMSplitMerge_1.1.1.tgz, r-release (x86_64):SBMSplitMerge_1.1.1.tgz, r-oldrel (x86_64):SBMSplitMerge_1.1.1.tgz

Linking:

Please use the canonical formhttps://CRAN.R-project.org/package=SBMSplitMergeto link to this page.


[8]ページ先頭

©2009-2025 Movatter.jp