Movatterモバイル変換


[0]ホーム

URL:


cjbart: Heterogeneous Effects Analysis of Conjoint Experiments

A tool for analyzing conjoint experiments using Bayesian Additive Regression Trees ('BART'), a machine learning method developed by Chipman, George and McCulloch (2010) <doi:10.1214/09-AOAS285>. This tool focuses specifically on estimating, identifying, and visualizing the heterogeneity within marginal component effects, at the observation- and individual-level. It uses a variable importance measure ('VIMP') with delete-d jackknife variance estimation, following Ishwaran and Lu (2019) <doi:10.1002/sim.7803>, to obtain bias-corrected estimates of which variables drive heterogeneity in the predicted individual-level effects.

Version:0.3.2
Depends:R (≥ 3.6.0),BART
Imports:stats,rlang,tidyr,ggplot2,randomForestSRC (≥ 3.2.2),Rdpack
Suggests:testthat (≥ 3.0.0),knitr, parallel,rmarkdown
Published:2023-09-06
DOI:10.32614/CRAN.package.cjbart
Author:Thomas RobinsonORCID iD [aut, cre, cph], Raymond DuchORCID iD [aut, cph]
Maintainer:Thomas Robinson <ts.robinson1994 at gmail.com>
BugReports:https://github.com/tsrobinson/cjbart/issues
License:Apache License (≥ 2.0)
URL:https://github.com/tsrobinson/cjbart
NeedsCompilation:no
Materials:README,NEWS
CRAN checks:cjbart results

Documentation:

Reference manual:cjbart.html ,cjbart.pdf
Vignettes:Introduction to cjbart (source,R code)

Downloads:

Package source: cjbart_0.3.2.tar.gz
Windows binaries: r-devel:cjbart_0.3.2.zip, r-release:cjbart_0.3.2.zip, r-oldrel:cjbart_0.3.2.zip
macOS binaries: r-release (arm64):cjbart_0.3.2.tgz, r-oldrel (arm64):cjbart_0.3.2.tgz, r-release (x86_64):cjbart_0.3.2.tgz, r-oldrel (x86_64):cjbart_0.3.2.tgz
Old sources: cjbart archive

Linking:

Please use the canonical formhttps://CRAN.R-project.org/package=cjbartto link to this page.


[8]ページ先頭

©2009-2025 Movatter.jp