acepack: ACE and AVAS for Selecting Multiple Regression Transformations
Two nonparametric methods for multiple regression transform selection are provided. The first, Alternating Conditional Expectations (ACE), is an algorithm to find the fixed point of maximal correlation, i.e. it finds a set of transformed response variables that maximizes R^2 using smoothing functions [see Breiman, L., and J.H. Friedman. 1985. "Estimating Optimal Transformations for Multiple Regression and Correlation". Journal of the American Statistical Association. 80:580-598. <doi:10.1080/01621459.1985.10478157>]. Also included is the Additivity Variance Stabilization (AVAS) method which works better than ACE when correlation is low [see Tibshirani, R. 1986. "Estimating Transformations for Regression via Additivity and Variance Stabilization". Journal of the American Statistical Association. 83:394-405. <doi:10.1080/01621459.1988.10478610>]. A good introduction to these two methods is in chapter 16 of Frank Harrell's "Regression Modeling Strategies" in the Springer Series in Statistics. A permutation independence test is included from [Holzmann, H., Klar, B. 2025. "Lancaster correlation - a new dependence measure linked to maximum correlation". Scandinavian Journal of Statistics. 52(1):145-169 <doi:10.1111/sjos.12733>].
| Version: | 1.6.3 |
| Suggests: | testthat,roxygen2 |
| Published: | 2025-08-29 |
| DOI: | 10.32614/CRAN.package.acepack |
| Author: | Phil Spector [aut], Jerome Friedman [aut], Robert Tibshirani [aut], Thomas Lumley [aut], Shawn Garbett [cre, aut], Jonathan Baron [aut], Bernhard Klar [aut], Scott Chasalow [aut] |
| Maintainer: | Shawn Garbett <shawn.garbett at vumc.org> |
| License: | MIT + fileLICENSE |
| NeedsCompilation: | yes |
| Materials: | README,NEWS |
| CRAN checks: | acepack results |
Documentation:
Downloads:
Reverse dependencies:
Linking:
Please use the canonical formhttps://CRAN.R-project.org/package=acepackto link to this page.