Movatterモバイル変換


[0]ホーム

URL:


sGMRFmix: Sparse Gaussian Markov Random Field Mixtures for AnomalyDetection

An implementation of sparse Gaussian Markov random field mixtures presented by Ide et al. (2016) <doi:10.1109/ICDM.2016.0119>. It provides a novel anomaly detection method for multivariate noisy sensor data. It can automatically handle multiple operational modes. And it can also compute variable-wise anomaly scores.

Version:0.3.0
Imports:ggplot2,glasso,mvtnorm, stats,tidyr, utils,zoo
Suggests:dplyr,ModelMetrics,testthat,covr,knitr,rmarkdown
Published:2018-04-16
DOI:10.32614/CRAN.package.sGMRFmix
Author:Koji Makiyama [cre, aut]
Maintainer:Koji Makiyama <hoxo.smile at gmail.com>
License:MIT + fileLICENSE
NeedsCompilation:no
Materials:NEWS
In views:AnomalyDetection
CRAN checks:sGMRFmix results

Documentation:

Reference manual:sGMRFmix.html ,sGMRFmix.pdf
Vignettes:Sparse Gaussian MRF Mixtures for Anomaly Detection (source,R code)

Downloads:

Package source: sGMRFmix_0.3.0.tar.gz
Windows binaries: r-devel:sGMRFmix_0.3.0.zip, r-release:sGMRFmix_0.3.0.zip, r-oldrel:sGMRFmix_0.3.0.zip
macOS binaries: r-release (arm64):sGMRFmix_0.3.0.tgz, r-oldrel (arm64):sGMRFmix_0.3.0.tgz, r-release (x86_64):sGMRFmix_0.3.0.tgz, r-oldrel (x86_64):sGMRFmix_0.3.0.tgz
Old sources: sGMRFmix archive

Linking:

Please use the canonical formhttps://CRAN.R-project.org/package=sGMRFmixto link to this page.


[8]ページ先頭

©2009-2025 Movatter.jp