Movatterモバイル変換


[0]ホーム

URL:


FPDclustering: PD-Clustering and Related Methods

Probabilistic distance clustering (PD-clustering) is an iterative, distribution-free, probabilistic clustering method. PD-clustering assigns units to a cluster according to their probability of membership under the constraint that the product of the probability and the distance of each point to any cluster center is a constant. PD-clustering is a flexible method that can be used with elliptical clusters, outliers, or noisy data. PDQ is an extension of the algorithm for clusters of different sizes. GPDC and TPDC use a dissimilarity measure based on densities. Factor PD-clustering (FPDC) is a factor clustering method that involves a linear transformation of variables and a cluster optimizing the PD-clustering criterion. It works on high-dimensional data sets.

Version:2.3.5
Depends:ThreeWay,mvtnorm, R (≥ 4.1.0)
Imports:ExPosition,cluster,rootSolve,MASS,klaR,GGally,ggplot2,ggeasy
Published:2025-03-06
DOI:10.32614/CRAN.package.FPDclustering
Author:Cristina Tortora [aut, cre, cph], Noe Vidales [aut], Francesco Palumbo [aut], Tina Kalra [aut], Paul D. McNicholas [fnd]
Maintainer:Cristina Tortora <grikris1 at gmail.com>
License:GPL-2 |GPL-3 [expanded from: GPL (≥ 2)]
NeedsCompilation:no
Citation:FPDclustering citation info
In views:Cluster
CRAN checks:FPDclustering results

Documentation:

Reference manual:FPDclustering.html ,FPDclustering.pdf

Downloads:

Package source: FPDclustering_2.3.5.tar.gz
Windows binaries: r-devel:FPDclustering_2.3.5.zip, r-release:FPDclustering_2.3.5.zip, r-oldrel:FPDclustering_2.3.5.zip
macOS binaries: r-release (arm64):FPDclustering_2.3.5.tgz, r-oldrel (arm64):FPDclustering_2.3.5.tgz, r-release (x86_64):FPDclustering_2.3.5.tgz, r-oldrel (x86_64):FPDclustering_2.3.5.tgz
Old sources: FPDclustering archive

Linking:

Please use the canonical formhttps://CRAN.R-project.org/package=FPDclusteringto link to this page.


[8]ページ先頭

©2009-2025 Movatter.jp