Movatterモバイル変換


[0]ホーム

URL:


mboost: Model-Based Boosting

Functional gradient descent algorithm (boosting) for optimizing general risk functions utilizing component-wise (penalised) least squares estimates or regression trees as base-learners for fitting generalized linear, additive and interaction models to potentially high-dimensional data. Models and algorithms are described in <doi:10.1214/07-STS242>, a hands-on tutorial is available from <doi:10.1007/s00180-012-0382-5>. The package allows user-specified loss functions and base-learners.

Version:2.9-11
Depends:R (≥ 3.2.0), methods, stats, parallel,stabs (≥ 0.5-0)
Imports:Matrix,survival (≥ 3.2-10), splines,lattice,nnls,quadprog, utils, graphics, grDevices,partykit (≥ 1.2-1)
Suggests:TH.data,MASS,fields,BayesX,gbm,mlbench,RColorBrewer,rpart (≥ 4.0-3),randomForest,nnet,testthat (≥ 0.10.0),kangar00
Published:2024-08-22
DOI:10.32614/CRAN.package.mboost
Author:Torsten HothornORCID iD [cre, aut], Peter BuehlmannORCID iD [aut], Thomas KneibORCID iD [aut], Matthias SchmidORCID iD [aut], Benjamin HofnerORCID iD [aut], Fabian Otto-SobotkaORCID iD [ctb], Fabian ScheiplORCID iD [ctb], Andreas MayrORCID iD [ctb]
Maintainer:Torsten Hothorn <Torsten.Hothorn at R-project.org>
BugReports:https://github.com/boost-R/mboost/issues
License:GPL-2
URL:https://github.com/boost-R/mboost
NeedsCompilation:yes
Citation:mboost citation info
Materials:NEWS
In views:MachineLearning,Survival
CRAN checks:mboost results

Documentation:

Reference manual:mboost.html ,mboost.pdf
Vignettes:Survival Ensembles (source,R code)
mboost (source,R code)
mboost Illustrations (source,R code)
mboost Tutorial (source,R code)

Downloads:

Package source: mboost_2.9-11.tar.gz
Windows binaries: r-devel:mboost_2.9-11.zip, r-release:mboost_2.9-11.zip, r-oldrel:mboost_2.9-11.zip
macOS binaries: r-release (arm64):mboost_2.9-11.tgz, r-oldrel (arm64):mboost_2.9-11.tgz, r-release (x86_64):mboost_2.9-11.tgz, r-oldrel (x86_64):mboost_2.9-11.tgz
Old sources: mboost archive

Reverse dependencies:

Reverse depends:boostrq,FDboost,gamboostLSS,gfboost,InvariantCausalPrediction,mermboost,tbm
Reverse imports:biospear,bujar,carSurv,censored,DIFboost,EnMCB,GeDS,geoGAM,mgwrsar,RobustPrediction,sgboost,survML,visaOTR
Reverse suggests:catdata,CompareCausalNetworks,familiar,HSAUR2,HSAUR3,imputeR,MachineShop,MLInterfaces,mlr,mlr3fda,pathMED,pre,spikeSlabGAM,sqlscore,stabs,survex,tidyfit

Linking:

Please use the canonical formhttps://CRAN.R-project.org/package=mboostto link to this page.


[8]ページ先頭

©2009-2025 Movatter.jp