Movatterモバイル変換


[0]ホーム

URL:


mvs: Methods for High-Dimensional Multi-View Learning

Methods for high-dimensional multi-view learning based on the multi-view stacking (MVS) framework. For technical details on the MVS and stacked penalized logistic regression (StaPLR) methods see Van Loon, Fokkema, Szabo, & De Rooij (2020) <doi:10.1016/j.inffus.2020.03.007> and Van Loon et al. (2022) <doi:10.3389/fnins.2022.830630>.

Version:2.1.0
Depends:glmnet (≥ 1.9-8),randomForest
Imports:foreach (≥ 1.4.4)
Suggests:testthat (≥ 3.0.0),mice (≥ 3.16.0),missForest (≥ 1.5),knitr,rmarkdown,bookdown
Published:2025-04-15
DOI:10.32614/CRAN.package.mvs
Author:Wouter van Loon [aut, cre], Marjolein Fokkema [ctb]
Maintainer:Wouter van Loon <w.s.van.loon at fsw.leidenuniv.nl>
License:GPL-2
NeedsCompilation:no
Citation:mvs citation info
Materials:README,NEWS
CRAN checks:mvs results

Documentation:

Reference manual:mvs.html ,mvs.pdf
Vignettes:An introduction to R package 'mvs' (source,R code)

Downloads:

Package source: mvs_2.1.0.tar.gz
Windows binaries: r-devel:mvs_2.1.0.zip, r-release:mvs_2.1.0.zip, r-oldrel:mvs_2.1.0.zip
macOS binaries: r-release (arm64):mvs_2.1.0.tgz, r-oldrel (arm64):mvs_2.1.0.tgz, r-release (x86_64):mvs_2.1.0.tgz, r-oldrel (x86_64):mvs_2.1.0.tgz
Old sources: mvs archive

Linking:

Please use the canonical formhttps://CRAN.R-project.org/package=mvsto link to this page.


[8]ページ先頭

©2009-2025 Movatter.jp