Movatterモバイル変換


[0]ホーム

URL:


rwa: Perform a Relative Weights Analysis

Perform a Relative Weights Analysis (RWA) (a.k.a. Key Drivers Analysis) as per the method described in Tonidandel & LeBreton (2015) <doi:10.1007/s10869-014-9351-z>, with its original roots in Johnson (2000) <doi:10.1207/S15327906MBR3501_1>. In essence, RWA decomposes the total variance predicted in a regression model into weights that accurately reflect the proportional contribution of the predictor variables, which addresses the issue of multi-collinearity. In typical scenarios, RWA returns similar results to Shapley regression, but with a significant advantage on computational performance.

Version:0.1.0
Imports:dplyr,magrittr, stats,tidyr,ggplot2,boot,purrr, utils
Suggests:knitr,rmarkdown,testthat (≥ 3.0.0),rlang,spelling
Published:2025-07-16
DOI:10.32614/CRAN.package.rwa
Author:Martin Chan [aut, cre]
Maintainer:Martin Chan <martinchan53 at gmail.com>
BugReports:https://github.com/martinctc/rwa/issues
License:GPL-3
URL:https://martinctc.github.io/rwa/,https://github.com/martinctc/rwa
NeedsCompilation:no
Language:en-US
Materials:README,NEWS
CRAN checks:rwa results

Documentation:

Reference manual:rwa.html ,rwa.pdf
Vignettes:Bootstrap Confidence Intervals for Relative Weights Analysis (source,R code)
Evaluating the Tonidandel & LeBreton Relative Weights Analysis Method (source,R code)
Introduction to Relative Weights Analysis with the rwa Package (source,R code)

Downloads:

Package source: rwa_0.1.0.tar.gz
Windows binaries: r-devel:rwa_0.1.0.zip, r-release:rwa_0.1.0.zip, r-oldrel:rwa_0.1.0.zip
macOS binaries: r-release (arm64):rwa_0.1.0.tgz, r-oldrel (arm64):rwa_0.1.0.tgz, r-release (x86_64):rwa_0.1.0.tgz, r-oldrel (x86_64):rwa_0.1.0.tgz
Old sources: rwa archive

Linking:

Please use the canonical formhttps://CRAN.R-project.org/package=rwato link to this page.


[8]ページ先頭

©2009-2025 Movatter.jp