Movatterモバイル変換


[0]ホーム

URL:


seer: Feature-Based Forecast Model Selection

A novel meta-learning framework for forecast model selection using time series features. Many applications require a large number of time series to be forecast. Providing better forecasts for these time series is important in decision and policy making. We propose a classification framework which selects forecast models based on features calculated from the time series. We call this framework FFORMS (Feature-based FORecast Model Selection). FFORMS builds a mapping that relates the features of time series to the best forecast model using a random forest. 'seer' package is the implementation of the FFORMS algorithm. For more details see our paper at <https://www.monash.edu/business/econometrics-and-business-statistics/research/publications/ebs/wp06-2018.pdf>.

Version:1.1.8
Depends:R (≥ 3.2.3)
Imports:stats,urca,forecast (≥ 8.3),dplyr,magrittr,randomForest,forecTheta,stringr,tibble,purrr,future,furrr, utils,tsfeatures
Suggests:testthat (≥ 2.1.0),covr,repmis,knitr,rmarkdown,ggplot2,tidyr,Mcomp,GGally
Published:2022-10-01
DOI:10.32614/CRAN.package.seer
Author:Thiyanga TalagalaORCID iD [aut, cre], Rob J HyndmanORCID iD [ths, aut], George Athanasopoulos [ths, aut]
Maintainer:Thiyanga Talagala <tstalagala at gmail.com>
BugReports:https://github.com/thiyangt/seer/issues
License:GPL-3
URL:https://thiyangt.github.io/seer/
NeedsCompilation:no
Materials:README
In views:TimeSeries
CRAN checks:seer results

Documentation:

Reference manual:seer.html ,seer.pdf

Downloads:

Package source: seer_1.1.8.tar.gz
Windows binaries: r-devel:seer_1.1.8.zip, r-release:seer_1.1.8.zip, r-oldrel:seer_1.1.8.zip
macOS binaries: r-release (arm64):seer_1.1.8.tgz, r-oldrel (arm64):seer_1.1.8.tgz, r-release (x86_64):seer_1.1.8.tgz, r-oldrel (x86_64):seer_1.1.8.tgz
Old sources: seer archive

Linking:

Please use the canonical formhttps://CRAN.R-project.org/package=seerto link to this page.


[8]ページ先頭

©2009-2025 Movatter.jp