Movatterモバイル変換


[0]ホーム

URL:


baorista: Bayesian Aoristic Analyses

Provides an alternative approach to aoristic analyses for archaeological datasets by fitting Bayesian parametric growth models and non-parametric random-walk Intrinsic Conditional Autoregressive (ICAR) models on time frequency data (Crema (2024)<doi:10.1111/arcm.12984>). It handles event typo-chronology based timespans defined by start/end date as well as more complex user-provided vector of probabilities.

Version:0.2.1
Depends:R (≥ 3.5.0),nimble (≥ 0.12.0)
Imports:stats,coda, graphics
Suggests:knitr,rmarkdown
Published:2024-08-19
DOI:10.32614/CRAN.package.baorista
Author:Enrico CremaORCID iD [aut, cre]
Maintainer:Enrico Crema <enrico.crema at gmail.com>
License:GPL-2 |GPL-3 [expanded from: GPL (≥ 2)]
NeedsCompilation:no
Language:en-GB
Citation:baorista citation info
Materials:README,NEWS
CRAN checks:baorista results

Documentation:

Reference manual:baorista.html ,baorista.pdf
Vignettes:Quick Start with the baorista R package (source)

Downloads:

Package source: baorista_0.2.1.tar.gz
Windows binaries: r-devel:baorista_0.2.1.zip, r-release:baorista_0.2.1.zip, r-oldrel:baorista_0.2.1.zip
macOS binaries: r-release (arm64):baorista_0.2.1.tgz, r-oldrel (arm64):baorista_0.2.1.tgz, r-release (x86_64):baorista_0.2.1.tgz, r-oldrel (x86_64):baorista_0.2.1.tgz
Old sources: baorista archive

Linking:

Please use the canonical formhttps://CRAN.R-project.org/package=baoristato link to this page.


[8]ページ先頭

©2009-2025 Movatter.jp