Movatterモバイル変換


[0]ホーム

URL:


promor: Proteomics Data Analysis and Modeling Tools

A comprehensive, user-friendly package for label-free proteomics data analysis and machine learning-based modeling. Data generated from 'MaxQuant' can be easily used to conduct differential expression analysis, build predictive models with top protein candidates, and assess model performance. promor includes a suite of tools for quality control, visualization, missing data imputation (Lazar et. al. (2016) <doi:10.1021/acs.jproteome.5b00981>), differential expression analysis (Ritchie et. al. (2015) <doi:10.1093/nar/gkv007>), and machine learning-based modeling (Kuhn (2008) <doi:10.18637/jss.v028.i05>).

Version:0.2.2
Depends:R (≥ 3.5.0)
Imports:reshape2,ggplot2,ggrepel,gridExtra,limma,statmod,pcaMethods,VIM,missForest,caret,kernlab,xgboost,naivebayes,viridis,pROC
Suggests:covr,knitr,rmarkdown,testthat (≥ 3.0.0)
Published:2025-11-11
DOI:10.32614/CRAN.package.promor
Author:Chathurani RanathungeORCID iD [aut, cre, cph]
Maintainer:Chathurani Ranathunge <caranathunge86 at gmail.com>
BugReports:https://github.com/caranathunge/promor/issues
License:LGPL-2.1 |LGPL-3 [expanded from: LGPL (≥ 2.1)]
URL:https://github.com/caranathunge/promor,https://caranathunge.github.io/promor/
NeedsCompilation:no
Language:en-US
Citation:promor citation info
Materials:README,NEWS
CRAN checks:promor results

Documentation:

Reference manual:promor.html ,promor.pdf
Vignettes:Introduction to promor (source,R code)

Downloads:

Package source: promor_0.2.2.tar.gz
Windows binaries: r-devel:promor_0.2.2.zip, r-release:promor_0.2.2.zip, r-oldrel:promor_0.2.2.zip
macOS binaries: r-release (arm64):promor_0.2.2.tgz, r-oldrel (arm64):promor_0.2.2.tgz, r-release (x86_64):promor_0.2.2.tgz, r-oldrel (x86_64):promor_0.2.2.tgz
Old sources: promor archive

Linking:

Please use the canonical formhttps://CRAN.R-project.org/package=promorto link to this page.


[8]ページ先頭

©2009-2025 Movatter.jp