Movatterモバイル変換


[0]ホーム

URL:


roclab: ROC-Optimizing Binary Classifiers

Implements ROC (Receiver Operating Characteristic)–Optimizing Binary Classifiers, supporting both linear and kernel models. Both model types provide a variety of surrogate loss functions. In addition, linear models offer multiple regularization penalties, whereas kernel models support a range of kernel functions. Scalability for large datasets is achieved through approximation-based options, which accelerate training and make fitting feasible on large data. Utilities are provided for model training, prediction, and cross-validation. The implementation builds on the ROC-Optimizing Support Vector Machines. For more information, see Hernàndez-Orallo, José, et al. (2004) <doi:10.1145/1046456.1046489>, presented in the ROC Analysis in AI Workshop (ROCAI-2004).

Version:0.1.4
Imports:stats, graphics, utils,ggplot2,fastDummies,kernlab,pracma,rsample,dplyr,caret,pROC
Suggests:mlbench,knitr,rmarkdown,testthat (≥ 3.0.0)
Published:2025-11-04
DOI:10.32614/CRAN.package.roclab
Author:Gimun Bae [aut, cre], Seung Jun Shin [aut]
Maintainer:Gimun Bae <gimunbae0201 at gmail.com>
BugReports:https://github.com/gimunBae/roclab/issues
License:MIT + fileLICENSE
URL:https://github.com/gimunBae/roclab
NeedsCompilation:no
Materials:README
CRAN checks:roclab results

Documentation:

Reference manual:roclab.html ,roclab.pdf
Vignettes:Introduction to roclab (source,R code)

Downloads:

Package source: roclab_0.1.4.tar.gz
Windows binaries: r-devel:roclab_0.1.4.zip, r-release:roclab_0.1.4.zip, r-oldrel:roclab_0.1.4.zip
macOS binaries: r-release (arm64):roclab_0.1.4.tgz, r-oldrel (arm64):roclab_0.1.4.tgz, r-release (x86_64):roclab_0.1.4.tgz, r-oldrel (x86_64):roclab_0.1.4.tgz
Old sources: roclab archive

Linking:

Please use the canonical formhttps://CRAN.R-project.org/package=roclabto link to this page.


[8]ページ先頭

©2009-2025 Movatter.jp