Movatterモバイル変換


[0]ホーム

URL:


localIV: Estimation of Marginal Treatment Effects using LocalInstrumental Variables

In the generalized Roy model, the marginal treatment effect (MTE) can be used as a building block for constructing conventional causal parameters such as the average treatment effect (ATE) and the average treatment effect on the treated (ATT). Given a treatment selection equation and an outcome equation, the function mte() estimates the MTE via the semiparametric local instrumental variables method or the normal selection model. The function mte_at() evaluates MTE at different values of the latent resistance u with a given X = x, and the function mte_tilde_at() evaluates MTE projected onto the estimated propensity score. The function ace() estimates population-level average causal effects such as ATE, ATT, or the marginal policy relevant treatment effect.

Version:0.3.1
Depends:R (≥ 3.3.0)
Imports:KernSmooth (≥ 2.5.0),mgcv (≥ 1.8-19),rlang (≥ 0.4.4),sampleSelection (≥ 1.2-0), stats
Suggests:dplyr,ggplot2,tidyr
Published:2020-06-26
DOI:10.32614/CRAN.package.localIV
Author:Xiang Zhou [aut, cre]
Maintainer:Xiang Zhou <xiang_zhou at fas.harvard.edu>
BugReports:https://github.com/xiangzhou09/localIV
License:GPL (≥ 3)
URL:https://github.com/xiangzhou09/localIV
NeedsCompilation:no
Materials:README,NEWS
CRAN checks:localIV results

Documentation:

Reference manual:localIV.html ,localIV.pdf

Downloads:

Package source: localIV_0.3.1.tar.gz
Windows binaries: r-devel:localIV_0.3.1.zip, r-release:localIV_0.3.1.zip, r-oldrel:localIV_0.3.1.zip
macOS binaries: r-release (arm64):localIV_0.3.1.tgz, r-oldrel (arm64):localIV_0.3.1.tgz, r-release (x86_64):localIV_0.3.1.tgz, r-oldrel (x86_64):localIV_0.3.1.tgz
Old sources: localIV archive

Linking:

Please use the canonical formhttps://CRAN.R-project.org/package=localIVto link to this page.


[8]ページ先頭

©2009-2025 Movatter.jp