Movatterモバイル変換


[0]ホーム

URL:


sMTL: Sparse Multi-Task Learning

Implements L0-constrained Multi-Task Learning and domain generalization algorithms. The algorithms are coded in Julia allowing for fast implementations of the coordinate descent and local combinatorial search algorithms. For more details, see a preprint of the paper: Loewinger et al., (2022) <doi:10.48550/arXiv.2212.08697>.

Version:0.1.0
Depends:R (≥ 3.5.0)
Imports:glmnet,JuliaCall,JuliaConnectoR,caret,dplyr
Suggests:knitr,rmarkdown
Published:2023-02-06
DOI:10.32614/CRAN.package.sMTL
Author:Gabriel LoewingerORCID iD [aut, cre], Kayhan Behdin [aut], Giovanni Parmigiani [aut], Rahul Mazumder [aut], National Science Foundation Grant DMS1810829 [fnd], National Science Foundation Grant DMS2113707 [fnd], National Science Foundation Grant NSF-IIS1718258, [fnd], Office of Naval Research Grant ONR N000142112841 [fnd], National Institute on Drug Abuse (NIH) Grant F31DA052153 [fnd]
Maintainer:Gabriel Loewinger <gloewinger at gmail.com>
BugReports:https://github.com/gloewing/sMTL/issues
License:MIT + fileLICENSE
URL:https://github.com/gloewing/sMTL,https://rpubs.com/gloewinger/996629
NeedsCompilation:no
CRAN checks:sMTL results

Documentation:

Reference manual:sMTL.html ,sMTL.pdf

Downloads:

Package source: sMTL_0.1.0.tar.gz
Windows binaries: r-devel:sMTL_0.1.0.zip, r-release:sMTL_0.1.0.zip, r-oldrel:sMTL_0.1.0.zip
macOS binaries: r-release (arm64):sMTL_0.1.0.tgz, r-oldrel (arm64):sMTL_0.1.0.tgz, r-release (x86_64):sMTL_0.1.0.tgz, r-oldrel (x86_64):sMTL_0.1.0.tgz

Linking:

Please use the canonical formhttps://CRAN.R-project.org/package=sMTLto link to this page.


[8]ページ先頭

©2009-2025 Movatter.jp