Movatterモバイル変換


[0]ホーム

URL:


mdmb: Model Based Treatment of Missing Data

Contains model-based treatment of missing data for regression models with missing values in covariates or the dependent variable using maximum likelihood or Bayesian estimation (Ibrahim et al., 2005; <doi:10.1198/016214504000001844>; Luedtke, Robitzsch, & West, 2020a, 2020b; <doi:10.1080/00273171.2019.1640104><doi:10.1037/met0000233>). The regression model can be nonlinear (e.g., interaction effects, quadratic effects or B-spline functions). Multilevel models with missing data in predictors are available for Bayesian estimation. Substantive-model compatible multiple imputation can be also conducted.

Version:1.9-22
Depends:R (≥ 3.1)
Imports:CDM,coda, graphics,miceadds (≥ 3.2-23),Rcpp,sirt, stats, utils
LinkingTo:miceadds,Rcpp,RcppArmadillo
Suggests:MASS
Enhances:JointAI,jomo,mice,smcfcs
Published:2024-07-15
DOI:10.32614/CRAN.package.mdmb
Author: Alexander Robitzsch [aut, cre], Oliver Luedtke [aut]
Maintainer:Alexander Robitzsch <robitzsch at ipn.uni-kiel.de>
License:GPL-2 |GPL-3 [expanded from: GPL (≥ 2)]
URL:https://github.com/alexanderrobitzsch/mdmb,https://sites.google.com/site/alexanderrobitzsch2/software
NeedsCompilation:yes
Citation:mdmb citation info
Materials:README,NEWS
In views:MissingData,MixedModels
CRAN checks:mdmb results

Documentation:

Reference manual:mdmb.html ,mdmb.pdf

Downloads:

Package source: mdmb_1.9-22.tar.gz
Windows binaries: r-devel:mdmb_1.9-22.zip, r-release:mdmb_1.9-22.zip, r-oldrel:mdmb_1.9-22.zip
macOS binaries: r-release (arm64):mdmb_1.9-22.tgz, r-oldrel (arm64):mdmb_1.9-22.tgz, r-release (x86_64):mdmb_1.9-22.tgz, r-oldrel (x86_64):mdmb_1.9-22.tgz
Old sources: mdmb archive

Reverse dependencies:

Reverse suggests:miceadds

Linking:

Please use the canonical formhttps://CRAN.R-project.org/package=mdmbto link to this page.


[8]ページ先頭

©2009-2025 Movatter.jp