Package for learning and evaluating (subgroup) policies via doubly robust loss functions. Policy learning methods include doubly robust blip/conditional average treatment effect learning and sequential policy tree learning. Methods for (subgroup) policy evaluation include doubly robust cross-fitting and online estimation/sequential validation. See Nordland and Holst (2022) <doi:10.48550/arXiv.2212.02335> for documentation and references.
| Version: | 1.6.2 |
| Depends: | R (≥ 4.1),SuperLearner |
| Imports: | data.table (≥ 1.14.5),lava (≥ 1.7.2.1),future.apply,progressr, methods,policytree (≥ 1.2.0),survival,targeted (≥ 0.6),DynTxRegime |
| Suggests: | DTRlearn2,glmnet (≥ 4.1-6),mets,mgcv,xgboost,knitr,ranger,rmarkdown,testthat (≥ 3.0),ggplot2 |
| Published: | 2025-12-04 |
| DOI: | 10.32614/CRAN.package.polle |
| Author: | Andreas Nordland [aut, cre], Klaus Holst |
| Maintainer: | Andreas Nordland <andreasnordland at gmail.com> |
| BugReports: | https://github.com/AndreasNordland/polle/issues |
| License: | Apache License (≥ 2) |
| NeedsCompilation: | no |
| Citation: | polle citation info |
| Materials: | README,NEWS |
| CRAN checks: | polle results |
| Reference manual: | polle.html ,polle.pdf |
| Vignettes: | optimal_subgroup (source,R code) policy_data (source,R code) policy_eval (source,R code) policy_learn (source,R code) right_censoring (source,R code) |
| Package source: | polle_1.6.2.tar.gz |
| Windows binaries: | r-devel:polle_1.6.2.zip, r-release:polle_1.6.2.zip, r-oldrel:polle_1.6.2.zip |
| macOS binaries: | r-release (arm64):polle_1.6.2.tgz, r-oldrel (arm64):polle_1.6.2.tgz, r-release (x86_64):polle_1.6.2.tgz, r-oldrel (x86_64):polle_1.6.2.tgz |
| Old sources: | polle archive |
| Reverse suggests: | targeted |
Please use the canonical formhttps://CRAN.R-project.org/package=polleto link to this page.